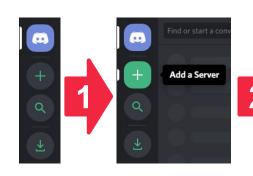
Lesson Objectives: MLTK-Brain

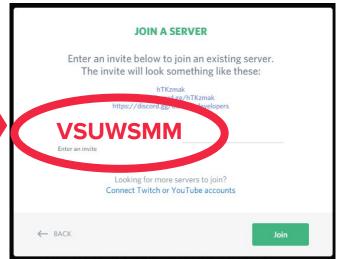
Indicators of Learner Success	 Able to build the Brain App on their Magic Leap device Positive Engagement on Discord
Lower Order Objectives	 Broad grasp of the current state of Magic Leap tooling Comfortable navigating MLTK feature set and example scenes Able to drag-and-drop MLTK prefabs into their own projects Able to access and follow Discord chat Comfortable articulating: Value of MLTK and its role in the tooling ecosystem Value of this workshop to colleagues and managers
Higher Order Objectives	 Able to leverage MLTK code in new C# MonoBehaviours Apply Best Known Practices for MR Interaction using MLTK Habitually give and receive help via Discord
Prerequisite Knowledge	 Intermediate Unity (Prefabs, MonoBehaviors, and Components) Basic C# with learner's preferred IDE Foundational Spatial Computing Experience Completed HelloCube on a Magic Leap headset Prior experience with Unity XR/AR

Engagement Strategy	 Content feels immediately useful in a professional capacity Shared sense of accomplishment from learner-learner sharing
Out of Scope	 Zero Iteration workflows Multi-user features of MLTK Unity Canvas, Tracked Pose Driver, Magic Leap Camera MLSpatialMapper, MLSceneOptimizerBehavior
Post-Workshop Paths	 Remaining MLTK features Zero Iteration workflows Explore other Discord channels

April 2nd

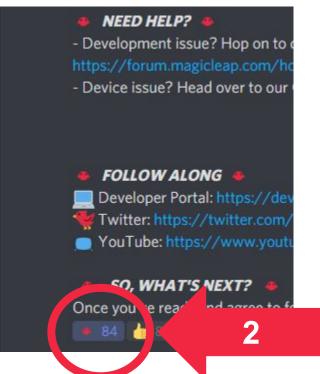

Magic Leap Online Workshop


Rapidly prototype a 3D visualization app



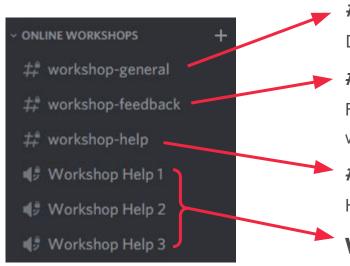
Have you joined us on Discord yet? discord.gg/VSUWSMM

Have you joined us on Discord yet? discord.gg/VSUWSMM


community-guideli... 🕹 🌣 INFO # role-assignment

CHAT

introductions


general

unreal

Join us on Discord:

discord.gg/VSUWSMM

#workshop-general

Drop a meme and say hello

#workshop-feedback

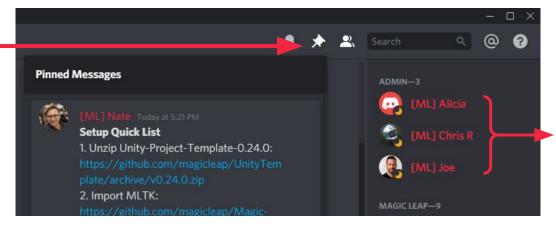
Fill out the Workshop Survey and let us know we can improve for next time in the chat.

#workshop-help

Having trouble? This is your first line of support.

Workshop help 1, 2, 3

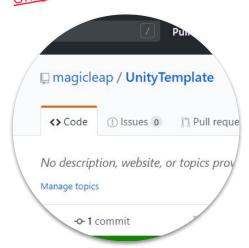
These are audio-only channels. Our Mentors may direct you here to talk through an issue as a group.


Join us on Discord:

discord.gg/VSUWSMM

Pinned Links

Important resources are pinned to each channel. Click the Pin icon for easy reference.

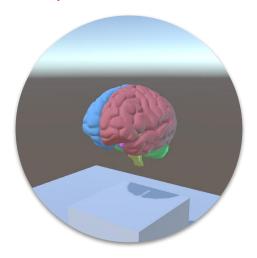

[ML] Mentors

Users with the [ML] prefix are from the Magic Leap team, here to answer questions and provide support!

ENVIRONMENT SETUP

Workshop Resources

Unity-Project-Template-0.24.0


Unity 2019.3 Project TemplateOpen via Unity Hub

MLTK

.unitypackage file
Import into the Unity Project Template

Workshop Assets

.unitypackage file
Import into the Unity Project
Template

MLTK should be imported first otherwise you may see broken references

Common Environment Setup Gotchas

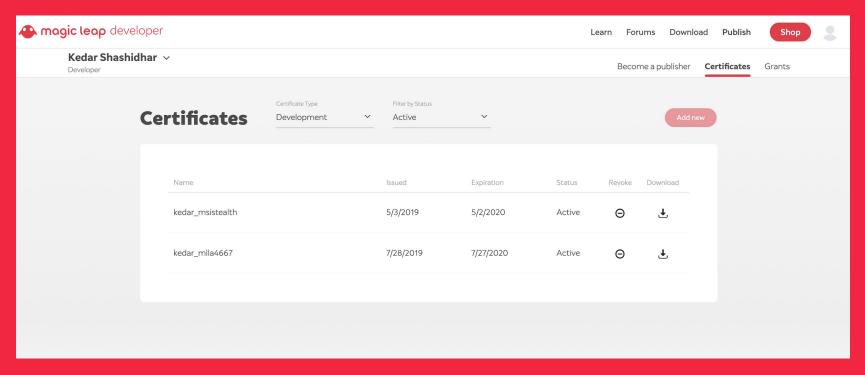
Lumin Build Target

- File > Build Settings
- Select Lumin and then click
 Switch Platform

Lumin SDK v0.24.1

- Preferences > External Tools
- Set Lumin SDK to:
 <username>/MagicLeap/mlsdk/v0.24.

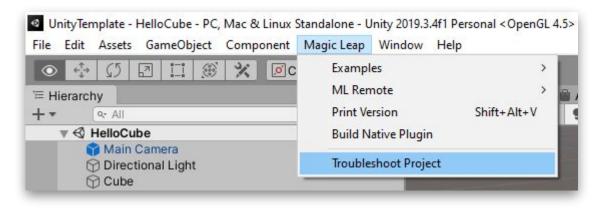
Certificate & Private Key



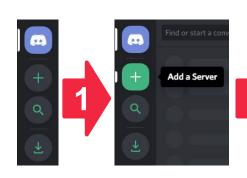
- Project Settings > Player
- Select the Lumin tab
- Expand *Publishing Settings*
- Select your ML Certificate

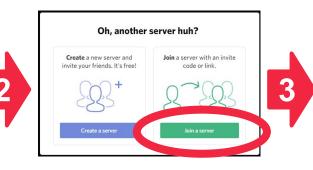
(re)Generating a Certificate

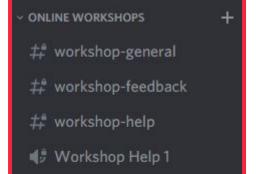
Urgent: The recent Lumin OS 0.98.10 update requires that you generate new certificates. Certificates generated before 3/15/2020 will not work.


Magic Leap Workshop Troubleshooter

MLTroubleshooter.unitypackage is pinned in **#workshop-help**

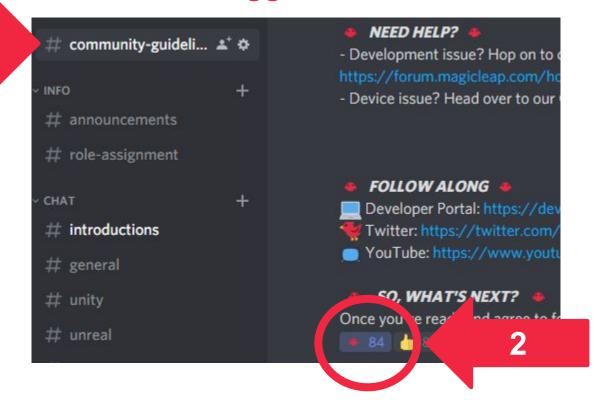

Once imported, launch from the menu:


Magic Leap > Troubleshoot Project

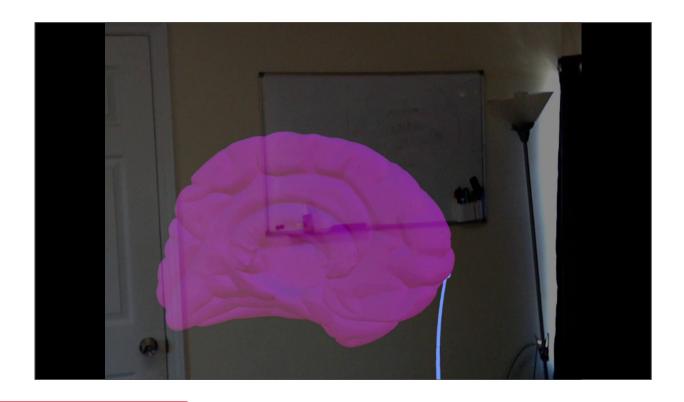




Have you joined us on Discord yet? discord.gg/VSUWSMM



1



ONFIDENTIAL OT FOR DISTRIBUTIO

AAGIC LEAP 2020

Today's Workshop:

MLTK Brain App

Kedar Shashidhar

Nate Aschenbach

Today's Host
Developer Evangelist

naschenbach@magicleap.com
@inventonater

Today's Primary Instructor

Developer Evangelist

 $\underline{kshashidhar@magicleap.com}$

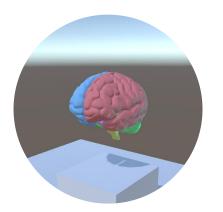
@kedarshashi

[ML] in #workshop-help

- [ML] Slukas
- [ML] Tricia
- [ML] Filip
- [ML] Josh N
- [ML] Shane Engelman
- [ML] Daniel
- [ML] Alicia
- [ML] Chris R

Agenda

Environment Set Up


Let's make sure everyone is ready to rock.

What is Magic Leap Tool Kit?

A high level introduction and map of the current tools.

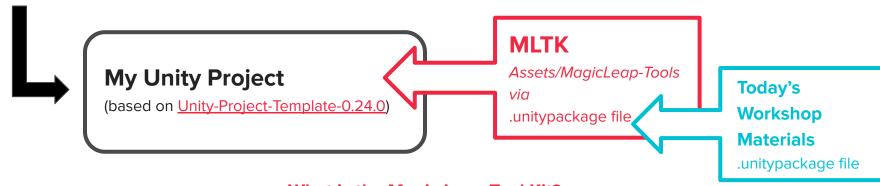
MLTK-Brain Example

MLTK applied to a medical 3D visualization application.

Wrap Up

Recap what we learned and get ready for next time.

Let us know if we are going too fast!



WHAT IS MLTK?

2019.3.x SDK 0.24.1

What is the Magic Leap Tool Kit?

Magic Leap Toolkit is a collection of Components and Prefabs delivered as a .unitypackage file.

These Prefabs provide developers with useful reusable tools that solve specific real-world problems or to extend functionality for developing Magic Leap apps.

CONFIDENTIAL NOT FOR DISTRIBUTION

Today...

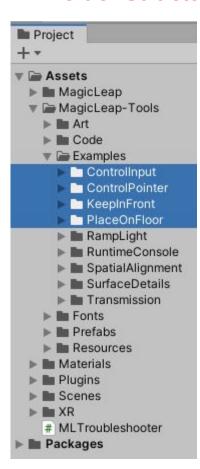
We will learn about these features

Control Input

Unity event binding and interaction for all Control input events.

Control Pointer

A spatial targeting, selecting, and manipulation system that displays weight and other physical characteristics


Keep In Front

Keeps digital content in users view

Place on Floor

Provides a starting position for an app's main content without user input or complex setups

MLTK Folder Structure

MAGIC LEAP

Today...

We will learn about these features

Control Input

Unity event binding and interaction for all Control input events.

Control Pointer

A spatial targeting, selecting, and manipulation system that displays weight and other physical characteristics

Keep In Front

Keeps digital content in users view

Place on Floor

Provides a starting position for an app's main content without user input or complex setups

Not today...

Please explore these other features on your own!

• Interactive Objects New!

A set of user inputs and objects that are part of the HandInput system

Hand Input New!

A plug-and-play tool that provides stable, smooth hand tracking for keypoints in any hand pose

• Playspace New!

Users define an area in their space for use in an app

• SimpleHandPointer New!

An alternative to the Control Pointer to enable hand input

Ramp Light

A shading technique which maximizes the visual quality of Magic Leap's additive display.

Transmission

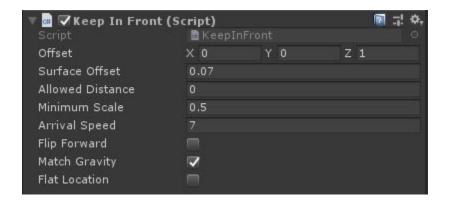
A cross-platform, multiplayer solution for connecting devices over LAN

Spatial Alignment

Visual alignment for peers connected with Transmission

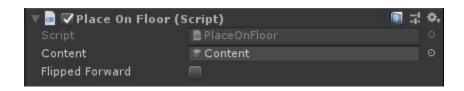
Runtime Console

Viewing log messages while running an app

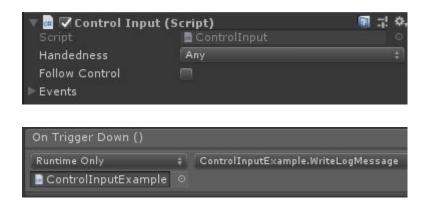

Surface Details

A solution to identify different surface types

MAGIC LEAP 2020


Keep In Front

Keep In Front is a component that keeps content in the user view while respecting other objects in the scene and attempts to stay in front of them.


Place On Floor

<u>Place On Floor</u> helps locate an area on the floor of the user's space where an app can place digital content.

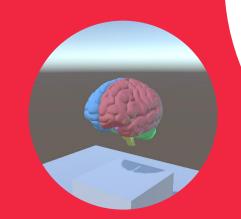
Control Input



<u>Control Input</u> component provides you with a comprehensive set of Unity events for interactivity with the Magic Leap Control.

Control Pointer

▽ 🕮 🗸 Pointer (Script)	■ ‡	₽,
Script	■ Pointer	
Input Driver	■ ControlPointer (ControlInputDriver	
Rigid While Pointing		
Layer Mask	Everything	
Surface Offset	0	
Idle Distance	1	
Max Distance	2	
Min Distance	0.4	
Drag Movement Threshol	0.01	
Drag Rotation Threshold	1	
Line Resolution	20	
Bendy Weight Multiplier	1	
Bend Point Percentage	© 0.9	
Bend Prediction Multiplier	14	
Allow Reach Stretching	▽	
Reach Stretch Curve		
Allow Effort Magnification	▽	
Effort Magnification Curve		



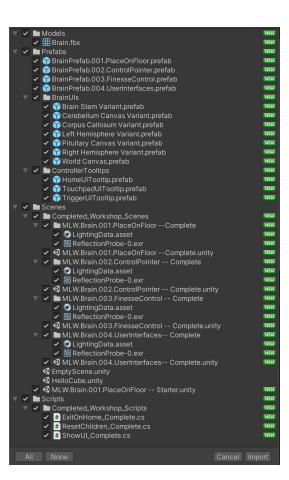
<u>Control Pointer</u> provides a pointer for the manipulation and movement of digital objects with the Control. Control Pointer includes components that let users target, select/deselect, and drag/drop objects.

00

Workshop Time

Brain.fbx - model

Prefabs


- Completed prefabs for each lesson module
- User Interfaces

Scenes

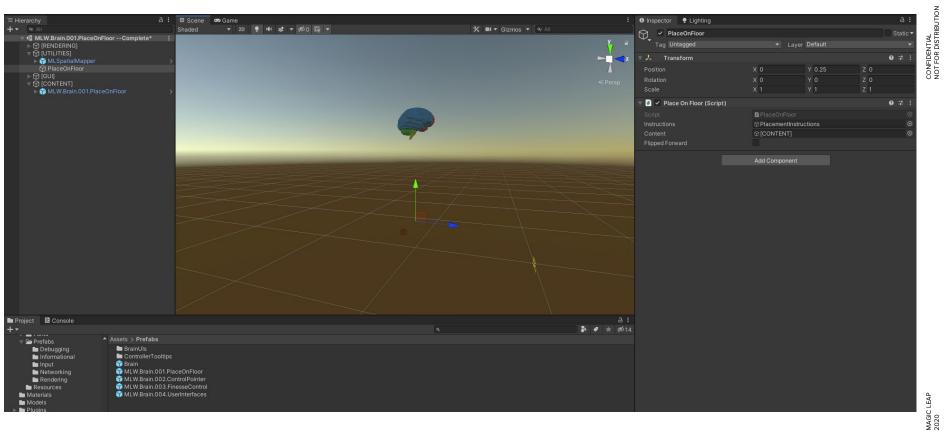
- Starter Scenes
- Completed Scenes for each lesson modules

Scripts

Completed Logic Scripts for this project

Scene Name	Associated Prefab
MLW.Brain.001.PlaceOnFloor Starter.unity	No associated prefab
MLW.Brain.001.PlaceOnFloor Complete.unity	BrainPrefab.001.PlaceOnFloor
MLW.Brain.002.ControlPointer Complete.unity	BrainPrefab.002.ControlPointer
MLW.Brain.003.FinesseControl Complete.unity	BrainPrefab.003.FinesseControl
MLW.Brain.004.UIControl Complete.unity	BrainPrefab.004.UIControl

Place On Floor


Add Brain Model to Our Scene

- 1. Open the MLW.001.PlaceOnFloor -- Starter Scene
- 2. Create a new gameobject and rename it to "[CONTENT]" and place it at the origin
- 3. Add the **BrainPefab.001.PlaceOnFloor** Prefab from the *Assets/Prefabs* folder to your Scene under the **[CONTENT]** Game Object in your Hierarchy
 - a. Set position transform to (0,1,0)
 - b. Set scale transform to (0.25,0.25,0.25)
- 4. Rebuild the Lighting. Open the lighting menu under Windows > Rendering > Lighting Settings. Scroll to the bottom of the window and hit the generate lighting button.

Set Up A Starting Place for our Application

- 1. Under "[UTILITIES]" create a new gameobject called "PlaceOnFloor" and place it at the origin
- 2. Add the component **PlaceOnFloor** to the gameobject
- 3. Create a new gameobject and rename it to "[GUI]" and place it at the origin
- 4. Add the prefab **PlacementInstructions** from *Assets/Prefabs/* as a child of "[GUI]"
- 5. Add the component **KeepInFront** to the prefab
- 6. In the **PlaceOnFloor** gameobject:
 - a. Add a reference to **PlacementInstructions** in the Instructions field
 - b. Add a reference to [CONTENT] in the content field

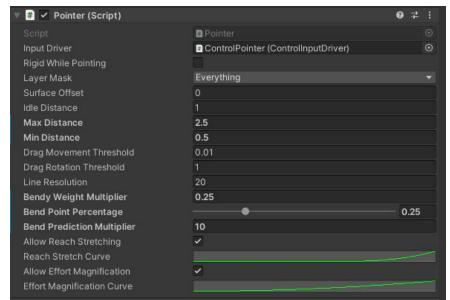
[PAUSE]

Build to Device / Run in Zero Iteration / Questions

Review of MLW.001.PlaceOnFloor

- 1. Removed default content in starter scene
- 2. Added the Brain Prefab to the scene
- 3. <u>Created a reference to global [CONTENT] gameobject in PlaceOnFloor component</u>

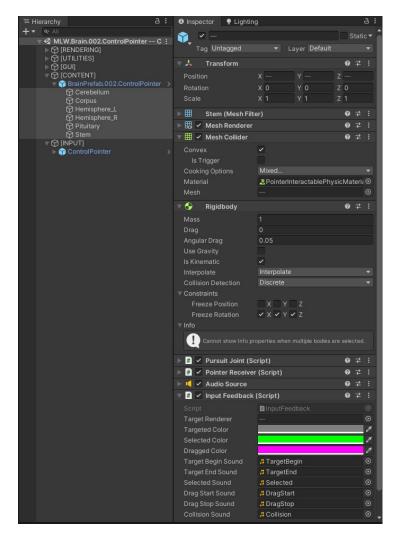
Control Pointer



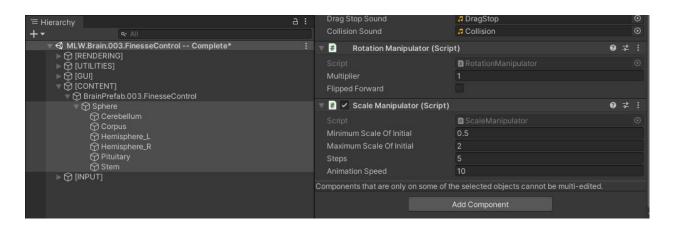
CONFIDENTIAL NOT FOR DISTRIBUTION

Add a Control Pointer to the Scene

- Create an empty game object in the Hierarchy and rename it as [INPUT]
 - a. Set its transform to be at the origin.
- Drag the ControlPointer prefab from /Assets/MagicLeap-Tools/Prefabs/Input into the Hierarchy as a child of the [INPUT] gameobject.
 - a. Set the following parameters on your Pointer
 Script


Max Distance	2.5
Min Distance	0.5
Bendy Weight Multiplier	0.25
Bend Point Percentage	0.25
Bend Prediction Multiplier	10

Adding Pointer Intractability to the Brain Model


Select all the children objects of the Brain Prefab. Add the following components and properties

- Add a **Mesh Collider** component
 - Check "Convex" in inspector
 - b. Add "PointerInteractablePhysicMaterial" to the colliders Material Field
- Add a **Pointer Receiver** component
 - This will automatically add a rigidbody a.
 - b. Check "Is Kinematic"
- Add Input Feedback component
 - Add audio clip references for each sound a. sample.

Add Rotatability and Scalability to All Interactable Objects.

- Select all children components of the Brain Prefab and add a "Rotation Manipulator" and "Scale Manipulator" Script. This allows the use of:
 - The radial dial to rotate objects when selected
 - Left and Tight tap on the Touchpad to scale up and down
 - Force Press on the Touchpad to Reset the scale

Setting Up Double Tap Home to Exit App

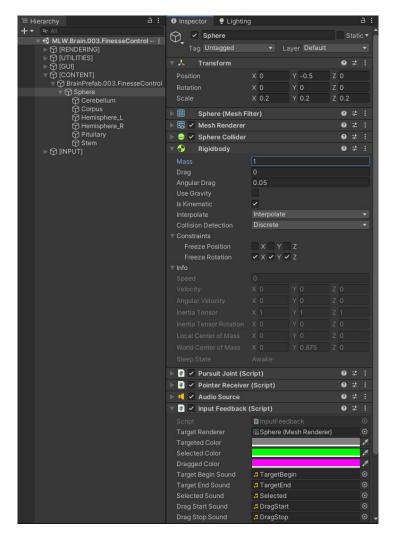
- In your scripts folder create a script called "ExitOnHome"
 - a. Add a single function called ExitApp with the following code.
- Add the ExitOnHome script as a component on the ControlPointer gameobject
- On the ControlInput component in ControlPointer in the "On Double Home ()" event callback. Add a new callback and reference the ControlPointer gameobject.
 - Select ExitOnHome.ExitApp as the function to call.

[PAUSE]

Build to Device / Run in Zero Iteration / Questions

Review of MLW.002.ControlPointer

- 1. Added a controller pointer prefab to your scene and control parameters
- 2. <u>Created a script ExitOnHome.cs that exits your application</u>
- 3. Added an event callback in Controllnput to the ExitOnHome.cs Script on Double Tap Home
- 4. Enabled basic pointer interaction to each brain game object by adding colliders & MLTK scripts
- 5. <u>Enabled rotation and scale manipulation to each brain game object by adding MLTK scripts</u>



Finesse Control

- Right Click on the Brain Prefab in your scene hierarchy and select "Open Prefab Asset"
- Right click on the root gameobject and navigate to 3D Object > Sphere to add a sphere gameobject to your prefab
 - Set position transform to (0,-0.5,0)
 - Set scale transform to (0.2,0.2,0.2) b.
 - Drag all brain game objects to be a child of the C. sphere
- 3. Add the following components to your **Sphere**.
 - Pointer Receiver a.
 - b. Rotation Manipulator
 - Scale Manipulator
 - Input Feedback d.
 - **MSA Source** e.
- Set "Is Kinematic" in Rigidbody to True
- 5. Add "PointerInteractablePhysicMaterial" to Sphere Collider
- 6. Add audio clip references in Input Feedback

Resetting the Brain using the Home Button

- 1. Create a script called ResetChildren.cs
- 2. Add the following private member variables

3. Add the following functionality in Start()

```
//Setting the following private member variables
private Vector3[] _originalPositions;
private Quaternion[] _originalRotations;
private Vector3[] _originalScales;
private bool _initialized = false;
```

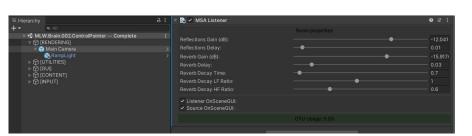
```
void Start()
        if (transform.childCount > 0)
            originalPositions = new Vector3[transform.childCount];
            originalRotations = new Quaternion[transform.childCount];
            originalScales = new Vector3[transform.childCount];
            for(int i = 0; i < transform.childCount; i++)</pre>
                originalPositions[i] = gameObject.transform.GetChild(i).localPosition;
                originalRotations[i] = gameObject.transform.GetChild(i).localRotation;
                originalScales[i] = gameObject.transform.GetChild(i).localScale;
        initialized = true;
```

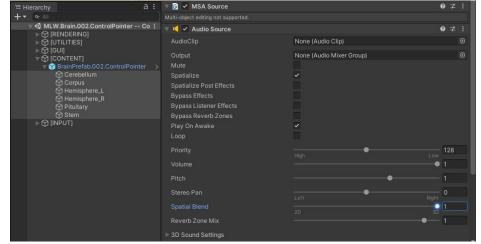
Resetting the Brain using the Home Button

In ResetChildren.cs add a function ResetChildTransforms()

```
public void ResetChildTransforms()
{
    if(_initialized)
    {
        for (int i = 0; i < transform .childCount; i++)
        {
            Transform child = gameObject .transform.GetChild(i);
            child .localPosition = _originalPositions[i];
            child .localRotation = _originalRotations[i];
            child .localScale = _originalScales[i];
        }
    }
}</pre>
```

2. Add **ResetChildren.cs** as a component on the **Sphere** gameobject


3. In your **ControlPointer** gameobject in the **ControlInput** component, add a callback to On Home Button


Tap()

Adding Audio Spatialization to Interaction Sounds

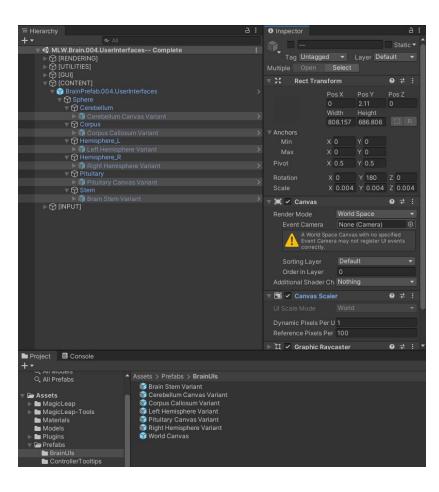
- On the Main Camera gameobject under rendering.
 Add an MSA Listener Component
- 2. Select all interactable brain components:
 - a. Add an **MSA Source** Component
 - b. On the Audio Source:
 - i. Check the **Spatialize** box
 - ii. Set **Spatial Blend** parameter to 3D

[PAUSE]

Build to Device / Run in Zero Iteration / Questions

Review of MLW.003.FinessePointer

- 1. <u>Modified the Brain Prefab in the scene with a global sphere object that parents brain game objects</u>
- 2. Added full pointer interaction to the Sphere gameobject
- 3. <u>Created a ResetChildren.cs script that resets the transforms of all children gameobjects</u>
- 4. Added an event callback in Controllnput to ResetChildren on Single Tap Home
- 5. Added audio spatialization to input feedback sounds



Adding Uls to each Brain Component

- In Assets/Prefabs/BrainUIs drag each brain component UI to the hierarchy as a child of each brain component model.
 - a. Disable all UI components

Displaying and Hiding the UIs with the Control Bumper

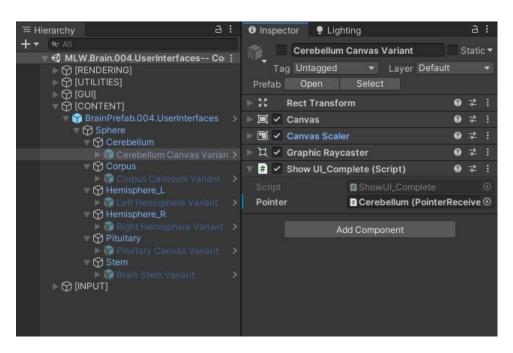
- I. Create a script called **ShowUl.cs**
- 2. Add MagicLeapTools as a namespace.
- 3. Add the following public and private member variables

Create Two New Functions, EnableUI() and HideUI()

```
private bool enabled = false;
```

public PointerReceiver pointer;

using MagicLeapTools;

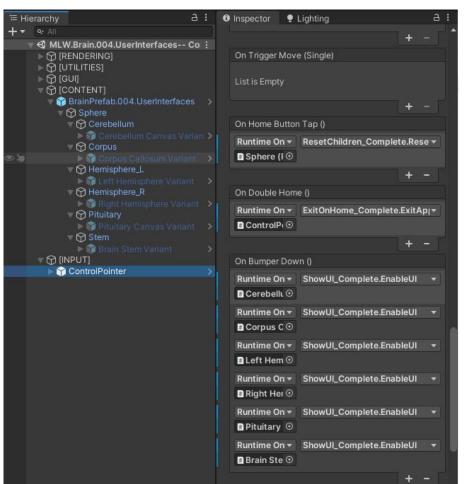

```
public void EnableUI() {
   if(pointer != null){
       if (pointer .Dragging) {
           enabled = ! enabled;
           gameObject. SetActive( enabled);
   else{
       Debug. Log("Null Pointer in Parent");
public void HideUI() {
    enabled = false;
    gameObject. SetActive( enabled);
```

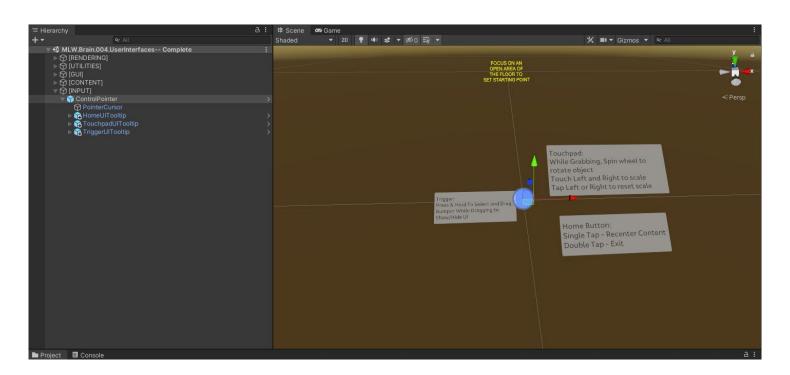
Displaying and Hiding the UIs with the Control Bumper

1. Inside **ResetChildren.cs** make the following modification to the ResetChildTransforms() function

```
public void ResetChildTransforms()
        if (initialized)
            for (int i = 0; i < transform.childCount; i++)</pre>
                Transform child = gameObject.transform.GetChild(i);
                child.localPosition = originalPositions[i];
                child.localRotation = originalRotations[i];
                child.localScale = originalScales[i];
                ShowUI Complete showUI = child.GetComponentInChildren<ShowUI Complete>();
                if (showUI != null)
                    showUI.HideUI();
```

- Select all 6 BrainUl Objects. Add ShowUl as a script to all of them.
 - For each **ShowUI** component add a reference to the "**PointerReceiver**" component in its parent game object a.




Displaying and Hiding the Uls with the Control Bumper

In the **ControlPointer** game object on the Controllnput component, add callbacks for each of the **ShowUI** objects and their respective **EnableUI**() functions.

In Assets/Prefabs/ControllerTooltips drag all three tooltip prefabs to be children of the ControlPointer gameobject.

[PAUSE]

Build to Device / Run in Zero Iteration / Questions

Review of MLW.004.UIControl

- 1. Added Brain UI prefabs to each brain gameobject
- 2. <u>Created a ShowUI script that enables, disables, and hides the UI components</u>
- 3. <u>Modified the ResetChildren script to disable all UIs on home button press</u>
- 4. Added the ShowUI script as a component on each brain UI
- 5. Added callback references to ShowUI script on bumper press in Control Input
- 6. Added Controller Toooltip prefabs as children of the ControlPointer gameobject

Today...

We learned about these features

Control Input

Unity event binding and interaction for all Control input events.

Keep In Front

Keeps digital content in users view

Place on Floor

Provides a starting position for an app's main content without user input or complex setups

Control Pointer

A spatial targeting, selecting, and manipulation system that displays weight and other physical characteristics

Not today...

Please explore these other features on your own!

Interactive Objects New!

A set of user inputs and objects that are part of the HandInput system

Hand Input New!

A plug-and-play tool that provides stable, smooth hand tracking for keypoints in any hand pose

• Playspace New!

Users define an area in their space for use in an app

• SimpleHandPointer New!

An alternative to the Control Pointer to enable hand input

• Ramp Light

A shading technique which maximizes the visual quality of Magic Leap's additive display.

Transmission

A cross-platform, multiplayer solution for connecting devices over LAN

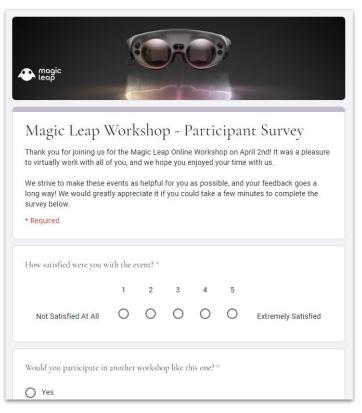
Spatial Alignment

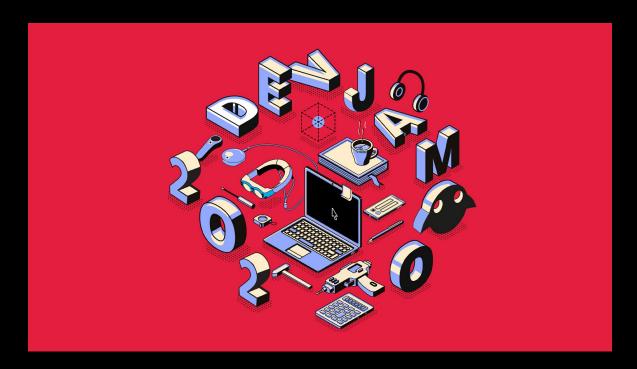
Visual alignment for peers connected with Transmission

Runtime Console

Viewing log messages while running an app

Surface Details


A solution to identify different surface types


MAGIC LEAP 2020

Help us Improve!

Link to the survey is pinned in **#workshop-feedback**

SPRING 2020 #MLDEVJAM

magi.ca/djsp20

APPLY FOR ACCESS HARDWARE

magi.ca/hardware

JOIN THE NIST CHARIOT CHALLENGE

Submit your idea for the Build Augmented Reality Interfaces for First Responders Contest by:

May 6, 2020

Go to **chariotchallenge.com** to learn more and register for the informational webinar on **April 14th, 2020 at 11am MT**

CHALLENGE PARTNERS:

magi.ca/hardware

CONFIDENTIAL NOT FOR DISTRIBUTION

STAY CONNECTED!

Developer Forums:

forum.magicleap.com

Twitter:

@magicleapdevs

Discord:

discord.gg/VSUWSMM

