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Abstract
Vector fields occur in many of the problems in science and en-
gineering. In combustion processes, for instance, vector fields
describe the flow of the gas. This process can be enhanced
using vector field visualization techniques. Also, wind tunnel
experiments can be analyzed. An example is the design of
an air wing. The wing can be optimized to create a smoother
flow around it.

To analyze such kind of datasets topological methods that
clearly show the whole structure of the vector field in one pic-
ture are a very good tool. During the last years, many exten-
sions were proposed for this method. In addition to standard
topological methods we also detect closed streamlines since
they are a topological feature that completes the topological
analysis. To accelerate the computation of such a topological
analysis we developed a parallel method to reduce computa-
tional time. Therefore, we spread the computation of the sep-
aratrices of the topological skeleton to clients of a computer
cluster.

To test our implementation we use a numerical simula-
tion of a swirling jet with an inflow into a steady medium.
We built two different Linux clusters as parallel test systems
where we check the performance increase when adding more
processors to the cluster. We show that we have a very low
parallel overhead due to the neglectable communication ex-
pense of our implementation.

1. INTRODUCTION

One visualization method to analyze vector fields is to com-
pute the topological skeleton. This topological skeleton con-
sists mainly of the singularities, i.e. the critical points or ze-
ros of the vector field, and the separatrices that connect these
singularities. The separatrices are computed by starting a
streamline at the saddle singularities displaced in both pos-
itive and negative eigendirections of the interpolating matrix
of the vector field.

Since the number of separatrices may be large depending

on the given vector field, the computation of the topological
skeleton may take several minutes or even hours. Therefore
we propose a parallel version of this algorithm to decrease
computational time by distributing the computation to several
clients.

There are mainly two tasks that have to be accomplished:
first, the critical points have to be determined in order to iden-
tify the saddle singularities. Second, the separatrices need
to be computed. Both tasks can be calculated individually
so that these tasks can be spread to different clients. Then
the clients can compute the whole streamline beginning at
the given starting point and return the graphical result to the
server. The server collects all the different separatrices to cre-
ate the whole topological skeleton. To get the whole topolog-
ical skeleton we use a streamline computation method that is
able to detect closed streamlines. Closed streamlines are – in
the same way as singularities – a topological feature of vector
fields. Also, they can be a link between to separate parts of the
topological skeleton. Consequently, the topological skeleton
may be incomplete if we ignore this feature.

In both tasks the number of tasks is very high and the time
that is necessary to fulfill the task is relatively low compared
to the whole computational effort. Consequently, spreading
these kinds of tasks to the clients results in a very good load
balancing.

As a parallel machine we use Linux clusters because of
the low price of standard PC components. The advantage is
that the processors are faster then the ones of for instance an
SGI/Cray T3E with the disadvantage of a slower communica-
tion between server and client. But altogether, a Linux cluster
is the best way to get a great performance at a low price.

To test our implementation we use a numerical simulation
of a swirling jet with an inflow into a steady medium. We
built different Linux clusters as parallel test systems where
we check the performance increase when adding more pro-
cessors to the cluster. We show that we have a very low par-
allel overhead due to the neglectable communication expense
of our implementation. Consequently, this implementation
fully gains from the speed of every added processor which
will be proven in several examples.

In the next section we summarize previous work, while sec-
tion 3 gives some background about parallel machines. In
section 4 we explain the parallel version of the algorithm. The



results including performance tests are explained in section 5.
Finally, we conclude in section 6 and give some ideas for im-
provements of our method.

2. RELATED WORK

Topological methods clearly depict the structure of the flow
by connecting sources, sinks, and saddle singularities with
separatrices. Critical points were first investigated by Perry
[12][10][11], Dallmann [2], Chong [1] and others. The
method itself was first introduced in visualization for two
dimensional flows by Helman and Hesselink [6][5][7][8][4].
Several extensions to this method exist. Scheuermann et al.
[14] extended the method to work on a bounded region. To
get the whole topological skeleton of the vector field, points
on the boundary have to be taken into account, also. These
points are called boundary saddles. These topological meth-
ods have been widely applied in the last decade. We use a
different streamline computation method [16] which is based
on a Runge-Kutta ODE solver but detects closed streamlines
while integrating to complete the topological analysis.

Sujudi et al. [15] present a method for computing stream-
lines in a parallel environment by splitting the dataset into
several sub-domains. If the streamline leaves a sub-domain
another process responsible for the actual domain has to con-
tinue the computation. Reinhard et al. [13] present a parallel
rendering method that distributes tasks for each ray which
has to be computed to the different processors of the paral-
lel machine. A parallelization of line integral convolution is
presented by Zöckler et al. [17] where the vector field is di-
vided into several subdomains depending on the number of
processors used.

3. PARALLEL MACHINES

In this section we briefly describe some parallel machines, the
Cray/SGI T3E, the IBM RS/6000 SP, and Linux clusters. The
first one uses a distributed shared memory concept while the
other two ones do not share their memory at all.

The Cray/SGI T3E is available since 1996. It uses a virtual
address space to access the memory that is spread among all
nodes. The nodes use a DEC Alpha processor 21164. This
processor consists of two integer and two floating point units
with IEEE 64 bit arithmetic. It has an eight KB first level and
96 KB second level cache directly on the chip. The GigaRing
technology based on the IEEE SCI standard is used to con-
nect the nodes. Every node is bi-directional connected to its
neighbor in a three dimensional network topology.

The IBM RS/6000 SP uses POWER4 microprocessors.
This type of processor has an SMP-on-a-chip design. It con-
sists of two 1.3 GHz processors including second level cache
directly on one chip. Every node has its own memory. Up to
sixteen nodes are grouped together in a network configuration
using high performance switches (HPS).

With Linux clusters there are no restrictions concerning
network topology, memory, or CPU speed. Almost every

standard PC component can be used in a Linux cluster. Even
several desktop Linux computers that are connected through
an Ethernet can be called a Linux cluster. But usually the
network is the bottleneck in such a system. Therefore faster
network devices like for instance a GigaBit network device
or Myrinet host interface is used. A flat, tree shaped network
topology is possible for a Linux cluster. But especially with
a greater number of nodes a network with routes from any to
any other node is desirable to avoid collisions and facilitate
faster transfers.

Because of their low prices and the great scalability Linux
clusters become more and more popular. They also appear
nowadays in the list of the top 500 Supercomputer Sites. The
main advantage of Linux clusters is the low price of standard
PC components. It is very extendable because there is no limit
in the number of nodes used in the cluster. In principle, you
only have to add a new computer to the network to increase
computational power. The processors are faster than the ones
used for the other two parallel machines. The advantage of
both, the Cray/SGI T3E and the IBM RS/6000 SP, is the faster
network. Both commercial systems are limited with respect
to extendability.

4. PARALLEL ALGORITHM

To compute the topological skeleton [8] of a vector field we
have to compute all the critical points that are present in the
vector field. Since we only need the data of the cells, i.e. the
position of the vertices and the vectors at these vertices, to
determine if there exists a critical point inside the cell and
where it is located, we can transfer these tasks to the various
clients of the cluster. When a client receives the index of a cell
it computes the critical point and returns the position and its
type, if it has found one, to the server. All tasks are controlled
by a scheduler which is a part of the server.

The scheduling of the tasks works as follows: the server
creates one task for each cell containing the index of this cell
and queues it in the scheduler. The scheduler itself checks
if there are any tasks left and if there is any client that has
finished its task yet. If there is more than one client without an
active job, the fastest is chosen. Then the next task is sent to
this client. The client receives this task, computes the critical
point and sends it, if it has found one, back to the server and
tells the scheduler that it has finished its job. Since the amount
of data to control the clients and transfer the critical points
back to the server is very low, we can fully benefit from the
performance of each client.

After we computed all critical points we start streamlines at
each saddle point in positive and negative eigendirection with
respect to the matrix of the linear interpolant. In this paper we
present an extended version of the topological skeleton which
consists not only of the singularities and separatrices. Since
closed streamlines usually act in the same way as singulari-
ties – they can either attract or repel the flow – they addition-
ally have to be taken into account when drawing the topo-
logical skeleton. Otherwise there may be different parts of
the topological skeleton that are not connected to each other.



Figure 1: Vector field on a cutting plane of a swirling jet simulation visualized by a hedgehog

Therefore we use a streamline integrator that automatically
detects closed streamlines[16]. When we encounter a closed
streamline we can continue the topological analysis inside the
closed streamline to get the whole topological skeleton. Con-
sequently, we get a complete topological analysis of the vec-
tor field.

Computing streamlines is not a local task since the stream-
lines may cross any region of the flow. Therefore, we do not
subdivide the data into several blocks like in some rendering
tasks [9] or other flow visualizations [17]. In this case, such
an approach would lead into an unbalanced parallel algorithm
or the tasks need to switch their assigned part of the dataset
quite often. This would cause much network traffic which
usually slows down the algorithm. Our implementation uses
a functional approach instead of dividing the dataset. We cre-
ate several tasks each of them representing the whole compu-
tation of one streamline starting at a given position. Then we
use the scheduler to distribute the tasks to the various clients
of our cluster. The individual tasks are relatively small with
respect to computational time compared to the computation
of the whole topological skeleton. The scheduler provides ev-
ery client that finished a job directly with the next one. Conse-

quently, we achieve a very good load balancing because there
is no client waiting during the whole computation.

Since the data of the vector field including octree and the
program fit into 128 MB of RAM we decided to use a con-
figuration where every client loads the whole dataset into its
own memory. This facilitates the fastest possible access to
the data. Since the server and every client loads the data at
the same time there is no time lost because otherwise the
clients would simply wait for the server until it has loaded
the dataset. When dealing with larger datasets we have to use
an out of core method which will be done in the future. But
since memory is very cheap nowadays many cluster comput-
ers are equipped with up to 1 GB of RAM which allows to
deal with big datasets.

Since we want to spread tasks that represent the whole com-
putation of one streamline, each task contains two items: a
point where the streamline has to start and the integration di-
rection. The other data that is needed for the computation is
already present at each client because the client has loaded
the whole dataset yet. Due to the minimal amount of data
of each task the communication cost which is produced by
migrating tasks is very low.



Figure 2: Topological skeleton of the swirling jet simulation

To distribute the tasks to the various clients we use the pre-
viously described scheduler: the server determines the start
positions of the streamline using each saddle point found in
the vector field. Then a task containing this start position and
the integration direction is created and spooled into the queue
of the scheduler, while the scheduler sends the next job to the
fastest client that has no active job. The client receives this
task, computes the separatrices and sends the result back to
the server. Again, the amount of data to control the clients
and transfer the separatrices back to the server is very low, so
that we can fully benefit from the performance of each client.

5. RESULTS

Our algorithm is implemented in C++, while the server com-
municates with the clients using PVM[3]. The different tasks
are encapsulated in C++-classes. This facilitates that the tasks
can transfer itself to the client on demand and the clients only
need to call a method to execute the received task.

To test the performance of our implementation we use
mainly two different systems. One is a Linux cluster con-
sisting of seven clients. Each node is equipped with an
AMD Duron 600 or AMD Duron 700 processor and 128 MB
of RAM. The server is a multiprocessor computer with two
Pentium III 500 processors. The second system is based on

some of our desktop computers with a Pentium II 350. We use
Linux and normal PC components since this is a cheap way to
get a great performance compared to other parallel comput-
ers. In order to get a more heterogeneous configuration we
mix both systems by using all Linux computers available in
our group for a last performance test.

The test dataset is a simulation of a swirling jet with an in-
flow into a steady medium. The simulation uses a cylindrical
domain and assumes rotational symmetry, so that we are left
with a two dimensional vector field on a plane through the
center axis of the cylinder. This results in a vector field with
high turbulence so that a lot of streamlines have to be com-
puted for the topological skeleton. In figure 1 a hedgehog
consisting of the vectors displayed as arrows is included. The
vector field has 362 critical points and for the topology about
six hundred streamlines have to be computed. Figure 2 shows
the resulting topological skeleton of the vector field.

To determine the optimal timing of our algorithm we used
the benchmark utility nbench1 in order to get a suitable ra-
tio between the speeds of the processors. Nbench is a port
to Linux/Unix of release 2 of BYTE Magazine’s BYTEmark
benchmark program2. We computed the floating-point in-
dex of each processor which gives the relative speed of the

1http://www.tux.org/˜mayer/linux/bmark.html
2http://www.byte.com/bmark/bmark.htm



floating-point unit compared to an AMD K6-233 processor.
The results can be found in table 1. Using these values we
computed the floating-point index of the whole parallel ma-
chine by summing up the indices corresponding to the in-
volved processors. Knowing the speed of the whole cluster
we can calculate the optimal runtime. If we neglect the com-
munication between server and clients we only need to scale
the runtime by multiplying the runtime on a single machine
divided by the speed gain of the cluster compared to that sin-
gle machine.

Table 1: Floating-point indices of the different processors

Processor Floating-point index
Pentium II 350 2.404
Pentium III 500 3.561
AMD Athlon 650 5.163
AMD Duron 600 4.768
AMD Duron 700 5.547
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Figure 3: Time needed to compute topological skeleton using
Pentium PII-350 processors displayed as graph

Table 2: Time needed to compute topological skeleton using
Pentium PII-350 processors shown in a table

# CPUs Time Optimum
1 612s —
2 306s 306s
3 205s 204s
4 158s 153s
5 134s 122s

Figure 3 and table 2 show the timings on the desktop com-
puters. Up to five machines were used. The optimal timings
are displayed using a dashed line while the real timings are
shown by a solid line. This configuration is very suitable for
testing the scalability of our implementation because every
computer has identical performance. Obviously, the com-
putation time is halved if the number of processors is dou-

bled which indicates a good scalability of our implementation
since they only differ slightly from the optimal ones.
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Figure 4: Time needed to compute topological skeleton using
a Linux cluster with AMD Duron 600 and AMD Duron 700
processors displayed as graph

Table 3: Time needed to compute topological skeleton using
a Linux cluster with AMD Duron 600 and AMD Duron 700
processors shown in a table

# CPUs Time Optimum
2 224s —
3 138s 134s
4 99s 96s
5 77s 74s
6 63s 61s
7 53s 50s
8 46s 43s
9 39s 37s
17 28s 24s

The timings of the algorithm running on our Linux cluster
with up to seven clients is displayed in figure 4 and table 3.
Again, the optimal timings are displayed using a dashed line
while the real timings are shown by a solid line. Since the
server has two processors there are always running at least
two tasks at the same time on this machine. Adding more
clients to the Linux cluster the time needed for the algo-
rithm is reduced correspondingly to the speed of its processor.
Again, we can see that we nearly benefit from the full per-
formance of each client due to the minimal communication
between server and client as can be seen from the difference
between the optimal and the real timings.

Our last test used all Linux machines of our visualization
group. This resulted in a parallel machine consisting of six
Pentium II-350, two AMD Athlon 650, one dual processor
machine with two Pentium III-500, four AMD Duron 600,
and three AMD Duron 700. Altogether, the algorithm used
seventeen processors and it took 28 seconds to compute the
whole topological skeleton of our test dataset. As expected,
this is faster than using the cluster alone corresponding to the



speed of the processors and slightly slower than the optimal
runtime of 24 seconds. This also tests our implementation in
a more heterogeneous parallel machine due to the different
speeds of the processors. It shows that we can decrease the
time needed for the computation by adding more processors
no matter what sort of machine it is.

6. CONCLUSIONS AND FUTURE WORK

We have presented a parallelization of an algorithm that com-
putes the topological skeleton of a vector field. The time
needed for the computation is reciprocally proportional to
the number of CPUs used in the cluster which gives a great
performance enhancement when increasing the number of
clients. Until the number of clients is lower than the number
of streamlines that have to be computed, the overall perfor-
mance of the cluster increases. Altogether, our implementa-
tion uses the full performance of the parallel machine.

There are only very few parallel systems available that are
capable of computing streamlines in parallel. Since they use
a different parallelization scheme – the dataset is usually di-
vided – these systems tend to be more unbalanced when it
comes to spreading the tasks compared to our implementa-
tion. Consequently, it takes more time to compute the topo-
logical skeleton with these systems. When dealing with vec-
tor fields with high turbulence closed streamlines are likely to
occur. In these cases detecting this feature also speeds things
up because standard integration methods usually use stopping
criteria like for instance a maximal length of the streamline.
As a consequence time is wasted by circling around the closed
streamlines which is not the case for our implementation.

Since the clients in our cluster only have 128 MB of RAM
we are currently working on an out of core method to cope
with larger datasets compared to the one we used in this paper.
When dealing with larger vector fields we can fully benefit
from the performance increase of our method.
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