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ABSTRACT

Due to the limitations of existing experimental methods for capturing stereochemical molecular data,
there usually is an inherent level of uncertainty present in models describing the conformation of macro-
molecules. This uncertainty can originate from various sources and can have a significant effect on al-
gorithms and decisions based upon such models. Incorporating uncertainty in state-of-the-art visualiza-
tion approaches for molecular data is an important issue to ensure that scientists analyzing the data are
aware of the inherent uncertainty present in the representation of the molecular data. In this work, we
introduce a framework that allows biochemists to explore molecular data in a familiar environment while
including uncertainty information within the visualizations. Our framework is based on an anisotropic de-
scription of proteins that can be propagated along with required computations, providing multiple views
that extend prominent visualization approaches to visually encode uncertainty of atom positions, allowing
interactive exploration. We show the effectiveness of our approach by applying it to multiple real-world

datasets and gathering user feedback.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The important role of visualization in molecular biology has
been outlined by Olson et al. [1] and is applied to many tasks
such as folding prediction, detection of active sites, or structural
examination. Several approaches have been proposed in this
area [2] in the last decades and are available in a variety of
open-source tools, making visualization a state-of-the-art tool
in biochemical applications. Molecular data can originate from a
variety of sources, such as X-ray crystallography, Nuclear Magnetic
Resonance Spectroscopy (NMR), Cryogenic electron microscopy
(Cryo-EM), or atomic simulations. Due to the experimental nature
of these approaches, several types of uncertainty are embedded in
the acquired data which mostly results in positional uncertainty
of the captured molecular structures.

This uncertainty affects the decision-making process in visual
analytics tasks and needs to be visually communicated, as shown
by Sacha et al. [3]. This especially applies to molecular data as it
is often used for drug development. When considering molecular
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data, the origin of uncertainty, the resulting positional variation,
and further requirements from the biochemical domain need to be
considered in order to provide uncertainty-aware visualization ap-
proaches, as shown in Section 2. As molecular biologists are in-
creasingly finding it necessary to employ a wide range of compu-
tational tools in their work, a framework that can be intuitively
used, without the need for special training, is an important aspect
that needs to be considered when developing novel visualization
approaches in this domain.

So far, molecular visualization approaches often lack the abil-
ity to communicate uncertainty or, if they are available, they need
to be included in existing visualization frameworks, as shown
in Section 3. In this work, we propose a visualization frame-
work for molecular data that is affected by uncertainty. We
provide an uncertainty-aware description of atom positions and
show how this knowledge can be inserted in arbitrary compu-
tations based on these positions (see Section 4). To incorporate
this knowledge, we propose a multi-view system that is com-
posed of prominent visualization approaches in molecular biology,
such as volumetric visualization, Ramachandran plots, and statis-
tics views. We adapted each of the visualization approaches such
that they are able to visually indicate the positional uncertainty
of atoms in specific proteins. The linked views are highly inter-
connected to provide user interaction for exploratory tasks (see
Section 5).
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Fig. 1. General setup of a protein. The backbone (bold lines) are composed of re-
peating CCN-Atoms of amino acid residues, where each residue has an R-group at-
tached to it.

Therefore, this paper contributes:

o Uncertainty-aware description of proteins and requirements for
their visualization

o Uncertainty-aware visual analytics framework for protein struc-
tures and their properties

We show the effectiveness of the presented framework
by applying it to real-world molecular data and demonstrate
how the uncertainty-aware visualization approaches perform (see
Section 6). Our results will be discussed in Section 7.

2. The role of uncertainty in molecular data
2.1. Biochemical basics

Proteins are the molecular machinery of biological systems.
They are among the most abundant of biological macromolecules
and undertake a diversity of roles in living systems. Structurally,
proteins consist of polymers (chains) of amino acids. There are 20
different amino acids typically found in human proteins. A single
protein can consist of one or more amino acid chains, typically
ranging in length from a few hundred to several thousand single
entities. We would like to refer to the introduction to proteins and
their structure by Buxbaum [4].

Fig. 1 shows that a protein contains a backbone that forms
when amino acids bind together. This backbone is a repetition of
€%, C_1, N and Cy chains. The connections between amino acids
allow for two rotational angles along with covalent bonds between
connected amino acids. Such angles are called dihedral angles,
meaning the angle between two planes spanned by four neighbor-
ing atoms, such that the planes intersect along the line between
the two middle atoms. The two dihedral angles of each amino acid
residue, typically referred to as ¢ and v, allow proteins to adopt a
wide variety of three-dimensional structures.

2.2. Uncertainty in biochemical data

Modern methods for protein structure determination, including
X-ray crystallography, Cryo-EM, and nuclear magnetic resonance
spectroscopy, can provide three-dimensional structures of soluble
polypeptides with high confidence. The resolution of these struc-
tures is sufficiently high that the location of individual protein and
ligand atoms can, in many cases, be determined with precision to
within a few angstroms. There are several sources of uncertainty
related to these atomic positions. Proteins are not monolithic, rigid
molecules [5]. Even within the context of protein crystals, local
protein regions are subject to thermal mobility to differing ex-
tents [6].

Intrinsic disorder and local mobility have been identified as im-
portant factors in protein ligand-binding and allosteric functional
mechanisms [7-9]. A variety of computational methods have been
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developed for the prediction of intrinsic disorder in proteins based
on structural and sequence constraints [10-12], and at least one
experimental method for the characterization of intrinsic disorder
has been proposed [13].

In X-ray crystallography experiments, structural uncertainty
arises from several sources. Thermal-related mobility of backbone
and side-chain atoms within the crystal structure lead to a blur-
ring effect on the electron density maps induced by x-ray diffrac-
tion. Additionally, the nature of the crystallization process can lead
to multiple structural variants of a protein within a single crys-
tal, possibly leading to one or more alternative locations for each
protein atom. While resolving a three-dimensional structure, this
uncertainty is captured in the B-Factor (thermal mobility) and oc-
cupancy terms for each atom. In practice, the occupancy is often
constrained to a value of 1.0 while the B-Factor term is used to
express the overall structural uncertainty of the atom [14,15].

Both X-ray crystallography and Cryo-EM experiments gener-
ally include one or more computational modeling steps. For X-
ray structures, this step involves minimization of unexplained ob-
served electron densities. For Cryo-EM experiments, the model-
ing involves automated or manual groping and alignment of two-
dimensional particle images, followed by the calculation of a three-
dimensional map from the aligned images. In both cases, artifacts
of the modeling process can contribute additional uncertainty to
the resulting three-dimensional structure.

For NMR-spectroscopy, structural constraints are captured
through the NMR experiment, and a number of structural mod-
els consistent with those constraints are generated. In this case, an
atom’s structural uncertainty is related to the variability of its po-
sition across the resulting model set.

It is important to note that not all conformational uncertainty
can be captured and visualized. In X-ray crystallography, for ex-
ample, the observed proteins may adopt a non-native structure to
facilitate the formation of a crystal lattice. The difference between
the native structure and the crystal structure is not known and is
thus not captured in the experimental data.

As experimental methods for observing the structure of biolog-
ical macromolecules have continued to advance, many sources of
uncertainty in the resulting molecular models remain. A clear un-
derstanding of variability and uncertainty in protein structure is
important to biochemists in a wide variety of scientific contexts
including cognizant drug design, docking, ligand screening, struc-
tural homology modeling, protein function assessment, and more.

2.3. Requirements for uncertainty-aware protein visualization

Based on the previous state-of-the-art analysis and application
analysis, we are able to determine a list of requirements, which
will be presented in the following. We followed the suggestion of
Lam et al. [16] where interviews were described as a proper tool to
understand the need of users. Here, we used the requirements de-
fined by Gillmann et al. [17] that are formulated to promote real-
world use of novel visualization approaches. The list contains 16
low-level requirements which are sorted into 5 categories (usability,
effectiveness, correctness, flexibility, and intuitiveness). We showed
the list to a domain expert from biochemistry and a visualization
expert to cover both views on the proposed topic. First, we let both
experts express the importance of each requirement to be fulfilled.
Here, a Likert scale was used (1 unimportant, 5 very important).
The results can be found in Table 1.

It can be observed that avoidance of clutter, uncertainty visual-
ization, different use cases, interactivity, and ease of use are high-
lighted as important by both experts. Further, interactivity and use
time efficiency are also listed as very important or important by at
least one of the experts. As these requirements are rather general
and low-level, we have used them to derive high-level requirements,



R.G.C. Maack, M.L. Raymer, T. Wischgoll et al.

Table 1
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User evaluation performed for the presented approach. 16 Low level requirements have been evaluated with a Likert scale from 1 to 5 in their importance from two experts
(visualization and domain). High ratings in importance are highlighted in gray. Our approach has been evaluated against two known approaches by each of the experts. The
results are color-coded in red (if our approach is rated worse than the known visualization tools), yellow (if our approach is rated better than known visualization tools) and

green (if our approach was rated better than the known tools).

Category Requirement Visualization expert

Domain expert

Imp. PyMol

Protoshop

Our Tool Imp. PyMol VMD Our Tool

Collaborative

Interactivity

Avoidance of Clutter
Minimized Input Parameters
Compatibility

Runtime Efficiency
Memory Efficiency

Use Time Efficiency
Precision

Quantification

Uncertainty

Use Cases

Different Datasets
Feedback Loop

Easy to use

No background knowledge
Weighted Average

Usability

Effectiveness

Correctness

Flexibility

Intuitiveness
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which can be found in the following. The list is further maintained
by the requirements to achieve uncertainty-awareness in visual an-
alytics tasks developed by Sacha et al. [3].

R1: Visualization of positional uncertainty. As the captured
position of atoms in a protein can have a huge impact on the com-
putation of properties of the considered protein, the propagation
of these uncertainties is required. Here, every computational step
based on atom positions needs to be adapted according to the un-
derlying uncertainty captured or computed for each atom [18].

R2: Integration into known visualizations. There exist a con-
sensus of visualization techniques that are suitable in the biochem-
ical domain [2]. These visualizations have been proven to fulfill
the requirements of molecular visualization. A visual representa-
tion that includes uncertainty information should be an extension
of known visualization paradigms.

R3: Avoidance of visual clutter. Visual clutter, in the sense of
this application, refers to the numerous occlusion of objects or in-
formation by overlying objects, resulting in a tangled visualization.
As many atoms are displayed in a 3D scene, potentially even dis-
playing the superposition of various protein models at the same
time, summarizing the available information is an important step
to communicate the available data in a compressed manner. A suit-
able visualization strategy should reduce visual clutter in full mea-
sure to allow the user to understand the outline of the dataset.

R4: Interactive visualization framework. As the visualization
of proteins usually results in a three-dimensional object, users
need to be able to explore the data utilizing suitable interaction
paradigms [17].

3. Related work

In this section, we attempt to provide a summary of related
work in terms of uncertainty-aware molecular visualization ap-
proaches as well as open-source frameworks that implement these
approaches.

3.1. Uncertainty-aware protein visualization

In the field of visualization, the inclusion of uncertainty was
classified as one of the most important research problems by
Johnson [19], as it cannot be implemented right away. Brodlie
et al. [20], as well as Potter et al. [21], divided uncertainty visu-
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alization challenges using the dimension of their data and the di-
mension of data points. Here, we obtain a valuable starting point
as we can consider molecular data as scalar data.

Molecule and protein visualizations are widely used. Therefore,
a large number of projects have been addressing issues of bio-
chemical, pharmaceutical, and medical researchers as well as their
industry members. Kozlikova et al. [2] summarized the variety of
visualization options in a state-of-the-art analysis. Here, the se-
lection of a proper uncertainty representation was named as one
of the main challenges [22]. In the following, the most impor-
tant uncertainty-aware protein visualization strategies related to
our approach are summarized.

Rheingans and Joshi [23] used various family members of
molecules holding the same atoms and bonds. They either su-
perimpose the members showing regions of high uncertainty
by large disagreement between the confirmation states or show
iso-surfaces using Gaussian splatting to indicate the likelihood of
an atom to be located at a set location. Although this provides a
visualization of all potential protein positions, it introduces visual
clutter in the resulting visualization. Instead, the reduction of vi-
sual clutter in these visualizations is focused on in this manuscript.

Rasheed et al. [24] utilized volume rendering to show the per
voxel uncertainty computed across an ensemble of slightly per-
turbed samples of the same molecule. It showed that the B-Factor
uncertainty correlates with this distribution function uncertainty.
Knoll et al. [25] provided a volume rendered uncertainty classifica-
tion based on electron density distributions using 2D transfer func-
tions, helping to identify interfaces based on chemical bond forces.
Skdnberg et al. [26] used volume rendering of spatial distribution
functions to visualize the distribution of selected structures over
ensembles of molecules.

Schulz et al. [27] presented a model visualizing the uncertainty
of secondary structure assignments on ribbon diagrams, compar-
ing various assignment algorithms. In contrast to this work, they
used various assignment algorithms as their source of uncertainty
instead of the positional uncertainty of atoms. The visualization
was made more squiggly in areas of high uncertainty instead of
using iso-surfaces for the visualization where the original geom-
etry can still be seen. In contrast to this contribution, we aim to
focus on the positional variations of atoms in proteins as a source
of uncertainty while preserving the original shape of the ribbon
model.
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Lee and Varshney [28] created an Uncertainty-aware 3D visu-
alization of the Solvent Excluded surface using Gaussian distri-
butions and a fuzzy rendering mode. Even though this approach
seemed promising, the appearance of the results is comparable to
blurring the original visualization.

Sasisekharan [29] developed the usage of dihedral angles to
describe polypeptide conformations. This so-called Ramachandran
plot was used throughout biochemical research quickly [30,31]. An
uncertainty-aware version of this plot, indicating the variations in
the dihedral angles, is provided here.

Maack et al. [32] created an Uncertainty-Aware version of the
Ramachandran plot to allow interaction with other components of
the system while improving the visual appearance. Unfortunately,
their model solely focuses on isotropic uncertainty as captured
by B-Factors. In the presented work, we introduce an anisotropic
model of uncertainty for each atom position and extend the Ra-
machandran plot according to this knowledge.

3.2. Uncertainty-aware protein visualization software

A major drawback of all presented visualization approaches is
that they are rarely used in open-source visualization tools. As Gill-
mann et al. [33] pointed out, this is a desirable feature in many
applications. The protein data bank provides a list of open-source
visualization tools [34] in general. We used this list and extracted
the tools that incorporate uncertainty.

Chimera is an open-source tool for visualizing molecular struc-
tures [35]. Variations in molecular modeling can be visualized by
plotting multiple proteins at the same time. Atoms can be ex-
changed and a Ramachandran plot can be used to examine the
effect of the deviations in atom positions. Here, the resulting visu-
alization can quickly become cluttered. In the presented approach
various protein models are summarized within one visualization,
such that the amount of visual clutter is minimized as much as
possible.

Polyview 3D [36] allows for the visualization of multiple po-
sitions of atoms in a protein using animation. Although this pro-
vides a nice visualization of different protein formations, it is only
able to show one formation at a point in time. In contrast to this,
our approach aims to show all confirmations simultaneously if re-
quested while giving users the freedom to watch any formation on
demand.

The molecular visualizer iMol [37] uses motion blur to indicate
variations in atom positions. Although this shows the uncertainty
of atom positions, it causes visual clutter if there exist a large num-
ber of blurred areas.

Swiss PDBViewer [38] represents uncertainty using color-
coding. Here, atoms or amino acid residues that hold high amounts
of positional uncertainty are shown in red highlight color. This
allows visualization of positional uncertainty without introducing
additional visual clutter, allowing to show the positional displace-
ment in space. Instead, the presented approach seeks to provide a
trade-off between minimal visual clutter and inclusion of potential
positions of an atom.

4. Uncertainty-aware description and properties of proteins
4.1. Uncertainty-aware description of molecular data

As shown in Section 2, there are several sources of uncertainty
and different ways to express them when capturing biochemical
data. When not considering uncertainty, atom positions are usually
treated as fixed Cartesian coordinates. As this ignores the fact that
atoms have a certain range of movement, captured by the B-Factor
or multiple models of the same protein, the uncertainty of atoms
will be described in an isotropic and anisotropic way.
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Fig. 2. Uncertainty-aware description of atom positions in a protein using three
eigenvectors of the standard deviational ellipse.

To make use of the available uncertainty information, we utilize
an extended description of points that allows the visualization to
capture positional uncertainty, introduced by Gillmann et al. [39],
referred to as probabilistic points. It describes every point by a
center ¥ and three orthogonal vectors o7, 05,03 to describe the
available movement in each direction. Those orthogonal vectors do
not have to be axis-aligned and either depend on the distribution
of the same atom in multiple models or the B-Factor.

Fig. 2 shows how each atom in a protein can be modeled as a
probabilistic point. To achieve quantification of uncertainty for the
underlying data, two types of uncertainty descriptions for molecu-
lar data have to be distinguished: isotropic and anisotropic.

Isotropic model When using a single model with a B-Factor
value attached to each atom, the root-mean-square displacement
can be retrieved from the B-Factor, yielding an isotropic model for
the atom’s movement. To highlight regions of high or low uncer-
tainty the normalized B-Factor, or the root-mean-square displace-
ment, can be utilized to visualize the isotropic model. Normalized
uncertainty can be scaled using a parameter to visually encode dif-
ferences better. This was highly recommended by our collaborators
when working with isotropic models, helping to better distinguish
uncertainty information.

In the isotropic case, the measured position of an atom is its
equilibrium position, used as the center of a probabilistic point
(X). This means that the model used to create data estimated this
position using the most likely conformation simulated. Addition-
ally, the o -values of each probabilistic point will be set to the root-
mean-square displacement (u) retrieved from the B-Factor of the
considered atom as shown in Eq. (1) [40].

B=8n%u? = u=

&2 (1)
This is a suitable assignment, as the root-mean-square displace-
ment captures the available movement of the respective atom in
each direction. Although probabilistic points can be modeled with
anisotropic o -values in each dimension, the available B-Factor is an
isotropic description of the positional uncertainty. Therefore, each
dimension gets the same o-value assigned. In total, ¥ and o can
be utilized to define a three-dimensional distribution function that
is able to output the Gaussian probability density for an atom to
be located at an arbitrary point in a three-dimensional space.
Anisotropic model On the other hand, multi-model data, like Nu-
clear magnetic resonance model ensembles, capture multiple po-
sitions of each atom. This leads to an anisotropic distribution of
points around their average. Therefore, an anisotropic approach can
be used instead. For this purpose, the average position of each
atom over all available models has to be calculated first. Those av-
erage positions are needed to find the covariance matrix for each
atom thereafter. In this way, the distribution of each atom over all
models can be described by retrieving the eigenvectors and corre-
sponding eigenvalues of said covariance matrices using a process
called Eigendecomposition. The eigenvector with the biggest eigen-
value describes the direction with the most substantial standard
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deviation, while the eigenvector with the smallest eigenvalue gives
the direction of the least substantial standard deviation. This way,
the normalized eigenvectors can be multiplied with the square
root of their eigenvalues to create o1, 0,, 03 [41]. As the covariance
matrix is symmetric, the eigenvectors are orthogonal which can be
used to create a Standard Deviational Ellipse(SDE) around each X. It
should be noted that the SDE is actually no ellipse [42], but a spe-
cial type of curve [43]. This fact was ignored to better preserve the
directions of the eigenvectors and to save time while computing
uncertainty hulls.

4.2. Uncertainty-aware computation of dihedral angles

Besides the challenge that the representation of uncertainty-
aware proteins varies from the classic representation of a protein,
the uncertainty-aware description of proteins also adds additional
information to their dihedral angles. This information contains the
available change of said angles induced by the available movement
of their atoms. In the following, both an isotropic and anisotropic
representations of dihedral angles will be described.

Isotropic model In the isotropic case, dihedral angles depend on
the position of four atoms each. If the considered atom uncertain-
ties describe a lot of movement, the corresponding dihedral angle
can also strongly change. This should be reflected in the computa-
tion of the dihedral angle uncertainty. Therefore, the dihedral an-
gle uncertainty consists of the average normalized B-Factors of the
considered atoms. This directly links the angle uncertainty to the
uncertainty of its atoms, while removing any influence of the angle
value itself. Also, the uncertainty can be directly scaled to better
show highly uncertain regions in the Ramachandran plot.

Anisotropic model For the computation of dihedral angles using
anisotropic uncertainty, the distribution of a dihedral angle can be
extracted from its distribution over all models. Therefore, the aver-
age dihedral angle of each amino acid residue has to be calculated
first. Then, the covariance matrix of each amino acid residue can
be created. It should be noted that the distance metric has to be
chosen with respect to angles, e.g. the distance between —179 de-
grees and 179 degrees is 2. Similar to the representation of prob-
abilistic points, the eigenvectors and eigenvalues can be extracted
from the covariance matrices. This way, the average dihedral angle
and its distribution can be shown.

A consistent view about the underlying uncertainty of dihedral
angles is given in both cases, as they are handled in a similar fash-
ion to their corresponding atoms. The isotropic case directly shows
the average uncertainty of the underlying atoms, whereas distri-
butions of atoms or dihedral angles are shown in the anisotropic
case. This visually and conceptually connects the 3D visualization
with the Ramachandran plot.

5. A Framework for uncertainty-aware visual analytics of
proteins

In order to devise a visual analytics tool for researchers in bio-
chemistry that allows users to review uncertainty in protein data,
we created an interactive multi-view framework. The framework
expands on well-established views in the biochemical community.
According to our domain experts, volume views and Ramachan-
dran plots are the most important visualization approaches that
are used in daily tasks. Our system builds upon these two visual-
ization strategies of proteins while including uncertainty informa-
tion and allowing interaction.

5.1. Uncertainty-aware volume visualization

One of the major goals of this work is to enhance the current
visualization capabilities by including uncertainty information. The
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utilized 3D visualization methodologies are being presented here.
The inclusion of uncertainty in the field of proteins consists of
showing possible movements of atoms in the examined protein.
Therefore a mutable transparent isosurface around known visu-
alizations is used to provide the original and uncertainty-aware
version in a mixed display, shown in Fig. 5. Using transparency
and color controls, the user can blend in the uncertainty informa-
tion as much as desired. The goal is to create a three-dimensional
barrier that indicates the potential mobility of protein atoms
considering specific possible freedom of movement. Throughout
long discussions with our collaborators in the biochemical domain,
we determined that uncertainty hulls should be computed based
on the underlying geometric representations of proteins.

5.1.1. 3D protein visualization types

The Van der Waals surface visualization draws a sphere for each
atom with the Van der Waals force of the corresponding chemical
element as its radius. The sphere representation is stored as a ge-
ometry which will be referred to as g hereafter. For any geometry,
b(g) is defined as the boundary of g including minimum b(g) iy
and maximum b(g)max of its points in space. The Ball-and-Stick vi-
sualization and the Solvent Accessible Surface use either constant
radii or set it to the Van der Walls radii plus a constant solvent
radius.

Apart from these spherical visualizations, the Ribbon model
is also implemented, drawing a spline curve using the backbone
atoms of a protein as their control polygon. The spline is repre-
sented by triangles, receiving their uncertainty information from
the closest backbone atoms. This is needed as the Ribbon model
only consists of triangles. To achieve a mapping between a trian-
gle to a B-Factor, the closest atom to each vertex of a triangle is
found and their uncertainty information is averaged. This allows
for sufficiently fast computation, while still retrieving a well-suited
estimate. Without averaging, one of the vertices would have to be
picked using the uncertainty information of the closest atom, lead-
ing to high inaccuracy in some cases. Another approach would be
to average the positions of triangle vertices, then finding the clos-
est atom to the middle.

5.1.2. Creating the uncertainty scalar field

In order to create a surrounding hull, a structure that repre-
sents the distance of each point in space to the closest primitive
in an atom representation is required. Although this task can be
solved analytically, it would result in significant computational ef-
fort. Also, it would have to be completely recomputed when choos-
ing a different o-distance from the geometry. In order to reduce
the computational effort and to allow isosurface scaling, a scalar
field F, using the boundaries mentioned in Section 5.1.1, is overlaid
with the original protein representation. Depending on the resolu-
tion of this scalar field, we are able to discretize the distance of
points in space to the closest point of the protein geometry with
relatively high accuracy. The distance to the nearest piece of geom-
etry, measured in a directional o -value, is evaluated for each scalar
in F. Measuring the distance in units of o is needed as each atom
has a different o -value. This approach presents a clear advantage
in that the scalar field has to be computed only once, such that
isosurfaces can be created at any o-value chosen by the user.

5.1.3. Distance of a voxel to an atom under uncertainty

To compute the distance of an atom to a voxel center measured
in a directional o, unit, first, the point of intersection I of an SDE
with the line between the voxel center S and the ellipse center E.
has to be found. Then, o, is found by taking the distance between
I and E. subtracting the radius.

o= |Ec.—1IIl -R (2)
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Fig. 3. Overview over the presented visualization framework. The framework consists of a volume view, Ramachandran plot view and a statistics view. The views are linked

with a hover interaction methodology. Here, the 1H97 protein is shown.

Fig. 4. Computation of a scalar field yielding discretized values of differences to a considered geometry in o scale. The example shows the scalar at the tip of the red vector

is 60 away.

o, is a measure of one standard deviation in a direction given
by E. and S.. Therefore, the distance between E. and S; minus the
radius has to be divided by o, to retrieve the distance between the
atom and the voxel in units of oy, allowing the user to later scale
the hull to their liking.

Do = (||Sc = Ecll = R) + 04 3)

In Egs. (2) and (3) the radius R always has to be subtracted as
it is a property of the representation itself, thus it is not chang-
ing when a different standard deviation threshold is chosen by the
user. It should also be noted that using an isotropic model results
in a simpler calculation of oy, as the uncertainty is the same in
each direction, i.e. 04 = 01 = 03 = 03. This function, calculating the
distance between voxel center S. and atom center E., with ellipse
axis 01,03, 03 and radius R, will be called o (S, E;) for later com-
putations (Fig. 4).

As described in Section 5.1.1, the Ribbon model is represented
by triangles such that the distance computation needs some mod-
ification. Obviously, the distance of a point to a triangle has to be
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found first [44]. Then, a sigma value has to be assigned to the tri-
angle for the isotropic case. In this case, we chose to average the
contribution of the closest atoms to each vertex. In the anisotropic
case, the center of the triangle is used to represent the triangle as
the center of an ellipsoid, using the properties of the closest atom
to that point.

To extract the uncertainty hull based on the computed field,
iso-surfaces are utilized. As the values in the scalar field repre-
sent the distance measured in a directional o distance from the
next geometry, a surface (e.g. with distance 1o from the geom-
etry) can be created showing the possible mobility of the atoms
in their equilibrium position under a statistical model. Therefore,
changing the iso-surface threshold is a simple operation and can
be done seamlessly on modern hardware.

5.14. Filling the scalar field

For each of the considered geometries, the boundary of the
scalar field has to be calculated with an as-small-as-possible ex-
tent, allowing enough space to fit the iso-surface but small enough
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to keep the resolution high and the size of voxels low. Therefore,
the boundary b(g) of the original geometry is offset in each direc-
tion by a constant value (c) that depends on the expected maxi-
mum offset and maximum uncertainty, resulting in a bounding box
b(F) of the scalar field F.

To calculate the scalar field for the sphere visualization, a Kd-
Tree saving all atom positions is generated. This structure allows
for an efficient search of close points in space. Then, for all voxels
in a discrete scalar field, created as described above, the n atoms
closest to its center are saved to a list L, efficiently created by the
aforementioned Kd-Tree K. Then, for each atom position on this
list, the distance, measured in a directional o-value, is calculated
from the voxel center to the surface of the current representation.
Therefore, the o (S, E:) function, calculating the directional o dis-
tance, is used as described in Section 5.1.3. The lowest o -distance
is then assigned to the voxel.

The number n is the amount of closest atoms that are examined
to determine the probability of a protein to be located in a spe-
cific cell of F. It is a value that influences the quality of the scalar
field, especially if the minimum and maximum o -values strongly
deviate throughout the dataset. As the radius and o-values often
strongly differ from each other when scanning neighboring atoms,
this value should be kept at roughly 10% of the atoms. Otherwise,
the iso-surface may lose its elliptical form when using high scaling
factors.

To achieve an uncertainty hull based on the scalar field F, a
scaling factor f is chosen. This factor influences the isovalue at
which the isosurface is created. Users can define this factor to
set the distance in standard deviations (anisotropic) or root mean
squares (isotropic). In principle, this factor can be set to an arbi-
trary number greater than zero, but in reality 3o usually encap-
sulates all available variations. Thus higher choices are often not
needed when ignoring extreme outliers. Fig. 9 shows an exam-
ple using f = 10, 20, 30, while 30 encapsulates even the strongest
outliers of the dataset.

5.1.5. Protein representations

As shown in Section 2, there exist several ways to visualize pro-
teins in 3D. We provide four protein representations: the space-
filling model, the ball-and-stick model, the ribbon model, and the
SAS (solvent-accessible surface). Fig. 5 provides all four visualiza-
tion types with a B-Factor color-coding. Each of the visualization
types can be colored according to various features of a protein. This
helps to encode important aspects of the amino acid residue that
users are interested in. Usually, color is set per atom, but as the
ribbon model does not have single atoms, each vertex is colored
the way the closest atoms would be colored. In between points the
color is being interpolated to receive smooth color-coding through-
out the whole surface.

The resulting uncertainty hull can either be colored consistently
or according to the relative B-Factor of the closest atom according
to uncertainty. A consistently colored hull is shown in gray, pre-
serving the color-coding underneath. Otherwise, the B-Factor color-
coding (green to red) is used. Additionally, any transparency level
can be chosen. Fig. 6 compares the gray hull with B-Factor colored
atoms and the color-coded uncertainty hull with gray atoms.

5.2. Uncertainty-aware Ramachandran plot

A Ramachandran plot displays the distribution of dihedral an-
gles in a protein. Throughout the years, by an empirical analysis
of such data, many nomenclatures of this plot have been found.
As scientists nowadays use a lot of different background maps, a
suitable application does need to support multiple Ramachandran
nomenclatures. Our tool is able to load any nomenclature provided
in a given format, allowing the user to change the color of regions,
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also mapping each nomenclature to a color-coding for the 3D vi-
sualization of any geometry type.

Building upon the uncertainty-aware Ramachandran plot by
Maack et al. [32], the creation of isolines in the isotropic case
works similar to the isosurface creation for 3D geometries. There-
fore a 2D scalar field is being created, filling it with to the near-
est dihedral angle combination while considering its uncertainty
in the ¢ and i direction, called phiu and psiu. Each point of the
dataset is modeled as an ellipse with (¢, V) as its center and
(phiu, psiu) as its axis (distance to the center in ¢ and i direc-
tion). In the end, the marching squares algorithm implemented in
VTK creates the isolines at a distance of 1 to directly draw the el-
lipses, removing intersecting parts. As the ellipses do not visually
clutter the image in any way, they are always shown. An example
is provided in Fig. 3.

In the anisotropic case, the distribution of each dihedral angle
over all models is shown. As described in Section 4.2, the average
dihedral angles, eigenvectors and eigenvalues are used to display
average positions and uncertainty of these positions. The average
dihedral angles are shown as points on the plot while displaying
the eigenvectors and eigenvalues as non-axis aligned ellipses us-
ing the eigenvectors for directions and the eigenvalues for scaling
of each direction. Similar to the isotropic case, intersections are
omitted using a scalar field and the marching squares algorithm.
Fig. 9 shows this using the 1G03 dataset.

5.3. Uncertainty-aware statistics view

Besides the volume and Ramachandran view, biochemists also
need to be able to look at the raw data. Therefore, the statistics
view is shown next to the Ramachandran plot and the 3D Visual-
ization, as shown in Fig. 3. It includes values such as amino acid,
atom type, and radius. In addition, we provide the amount of un-
certainty in each atom, showing a raw view of the values captured
for each atom and residue. Here, two different modes are available.

If no amino acid residue is selected, the detail view shows a
number of important features of the dataset, like the ID code, a
unique identifier of the Protein Database, and uncertainty informa-
tion. To be able to correlate B-Factors with each other, a reference
is needed. Here, the B-Factor range and its average value are be-
ing displayed. The same is provided for the averaged B-Factors of
the amino acid residues, while it should be noted that this average
does not equally consider all atoms, as amino acids have different
amounts of atoms in them. For the analysis of dihedral angle un-
certainty, their uncertainty range and average are also provided.

When an amino acid residue is being picked by the user, the
detail view changes to an elaborate display for the amino acid
residue and its atoms. General information like its ID and type
of amino acid is provided next to the dihedral angles, including
their uncertainties, average B-Factor, Ramachandran region, and
secondary structure type. The chain ID and Residue ID might be
interesting for identifying certain amino acid residues directly. To
give detailed information about the involved atoms, each atom is
provided displaying the element, ID, and B-Factor. An example is
shown in Fig. 3.

Normalized B-Factors are often used for comparison [46], there-
fore, normalized values for all B-Factors and dihedral angle uncer-
tainties are provided next to their absolute value in the statistics
view. This allows users to get a sense of high and low uncertainty
in the viewed dataset.

5.4. Interaction

Our presented system is designed such that it consists of mul-
tiple views that are highly interconnected and linked.
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(©)

(d)

Fig. 5. Uncertainty-aware volume visualization of the 1H97 dataset [45], using different geometries for visualization. a) Sphere visualization. b) Ball-and-Stick visualization.

c) Solvent Accessible surface visualization. d) Ribbon model visualization.

The interaction between the 3D view, the Ramachandran plot,
and the detail view is a point-to-show implementation. An exam-
ple can be seen in Fig. 3. When hovering the cursor over either an
atom in the 3D view or a data point in the Ramachandran plot,
the corresponding amino acid residue is being shown in the 3D
view along with the Ramachandran plot and the detail view. This
enables a fast correlation of different visual aspects of a protein
to be examined. The 3D view displays the amino acid residue by
drawing its atoms as red spheres whereas the Ramachandran plot
highlights the corresponding data point with a red disk around it.
All important information is provided by the detail view. When de-
sired, the selection can be fixed to a certain amino acid residue by
clicking on it using the right mouse button. Right-clicking again

resets the selection and highlights another residue or shows the
general dataset information, depending on the mouse cursor posi-
tion. Through this mechanism, a set of amino acids can be depicted
such that they can be examined in their entirety.

The uncertainty hull controls are another important feature.
Users are allowed to toggle the hull on and off, use the relative
or absolute B-Factors, toggle between the gray and colored hull,
and set the transparency of the hull. The transparency is especially
important, as surrounding a geometry with any transparent sur-
face always partly blocks the view to some features of the object.
In this case, the color-coding of the original geometry might be
harder to see. A transparent hull better preserves the features of
the original geometry, making it harder to see details of the hull

(a)

(b)

Fig. 6. Uncertainty-aware volume visualization of the 1H97 dataset[45] at 35% uncertainty transparency. Gray uncertainty hull with B-Factor color-coded atoms (a) and

B-Factor colored uncertainty hull with gray atoms (b).
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itself. An opaque hull shows depth information in a clear way but
blocks the view to the underlying geometry.

6. Results

In the following section, the presented approach is applied to
real-world proteins. They have been selected by a domain scientist
who considered them interesting in terms of uncertainty analysis.
All use cases are known, as this allows to check if the uncertainty
visualization indicates the aspects of uncertainty visualization that
are relevant in the respective case. The datasets were used in con-
junction with our approach and the findings have been discussed
with our collaborator. The presented approach was implemented
in C++ using the VTK [47] library with the OSPRay[48] rendering
backend, using Qt [49] for GUI design.

6.1. Monomeric hemoglobin from the trematode paramphistomum
epiclitum

As a first example, we present a small but interesting pro-
tein, to obtain a first understanding of the presented visualiza-
tion approach. Fasciola is a type of fluke, commonly known as
liver fluke. It is a parasitic organism that infects the liver tis-
sue of a wide variety of mammals, including humans, in a con-
dition known as fascioliasis. Scientists became very interested in
monomeric hemoglobin (1H97 [45]) of this organism as it could
be the key to developing a vaccine against the parasite.

We use this protein to provide an overview of the available
visualization approaches. The underlying computational model of
uncertainty is isotropic as we consider the B-Factors assigned to
each atom in the protein originating from the PDB file. Fig. 5 shows
a variety of uncertainty-aware volume visualization approaches to
represent 1H97. The different types of visualization (sphere visu-
alization, ball-and-stick visualization, solvent accessible surface vi-
sualization, and ribbon visualization) are color-coded with the re-
spective B-Factor (green: low B-Factor, red: high B-Factor). In addi-
tion, we show the uncertainty hull indicating the potential spatial
displacement of atoms. Here, we can see that the surface differs
from the original visualization when the B-Factor of nearby atoms
is high. This confirms the computational setup of the presented ap-
proach.

Fig. 3 shows the uncertainty-aware Ramachandran plot of 1H97
in the middle. We can directly see that the computed dihedral an-
gles are in general very stable according to the spatial movement
of captured atom positions. This can be seen by the relatively nar-
row uncertainty bounds around the visualized points which indi-
cates that the spatial movement of atoms is small. Our collaborator
confirmed these findings of our visualization approach. In general,
most angles lie in desired areas and the consideration of potential
changes in the atom position does not change this impression.

It can be seen that the proposed visualization approach helps
to confirm the stability of a protein considering uncertainty infor-
mation. We also showed throughout this section that a variety of
visualization approaches can be adapted using our proposed visual
metaphor of uncertainty hulls.

6.2. Cyclodextrin glycosyltransferase

The second example is cyclodextrin glycosyltransferase. The ex-
ample was chosen by our collaborator as the protein is one protein
he is interested in examining the variability of simulation results.
This protein is able to produce cyclodextrins from starch, which is
an important process in the production of drugs, as it helps trans-
port certain molecules in an efficient manner. In the presented ex-
ample, the original cyclodextrin glycosyltransferase (1CGT [50]) is
compared with cyclodextrin glycosyltransferase that is affected by
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a mutagenesis (1CGU [51]) in the active site. During the process of
mutagenesis, certain amino acids are exchanged, which can affect
the function of the protein. As the active site of the protein is the
main catalyst of a chemical reaction, this part of the protein needs
further examination in terms of stability and uncertainty. The data
is provided as an isotropic model of uncertainty in this example.

Fig. 7 a shows the cyclodextrin glycosyltransferase (1CGT) with-
out mutagenesis using the ball view. Color-coding reflects the area
in the Ramachandran plot that the respective backbone amino
acids are located in. We selected an amino acid residue on the
active site to review the thermal stability of the protein. Show-
ing the uncertainty hull of the protein, it can be seen that the
hull is displaced equally throughout the three-dimensional space,
without larger outliers in the spatial displacement. Fig. 7b displays
the uncertainty-aware Ramachandran plot of 1CGT. Here, it can be
seen that most amino acid residues are located in desirable areas
of the Ramachandran plot. There exist outliers in the lower-left
corner, where we figured out that they are not included in the ac-
tive site of the protein and, therefore, are not of main interest. The
uncertainty hull around the remaining amino acid residues shows
that although spatial displacement of the proteins can be observed,
most amino acid residues will not leave the desired areas in the
Ramachandran plot. This helps to determine that the current com-
position of the protein seems to be stable. Especially when con-
sidering the active site of 1CGT, we can see that all residues are
located in the dark green areas which are stable.

In contrast to the finding of 1CGT, Fig. 7c shows 1CGU, a cy-
clodextrin glycosyltransferase that is affected by mutagenesis. The
color scheme, uncertainty hull, and performed selection are identi-
cal to the ones in Fig. 7c. When reviewing the volume views it can
be seen that the uncertainty hull does not change optically, mean-
ing that the spatial displacement of the atoms in the protein is not
affected by the mutagenesis. On the other hand, we can directly
see that the color-coding of several amino acid residues changed
in the volume view. This means that several amino acid residues
are now located in another area of the Ramachandran plot in com-
parison to the original protein. Overall, we can detect more amino
acid residues that are located in undesirable areas (light yellow).
When reviewing the active site (selection made in red), the se-
lected amino acid residue in the active site is no longer located in
a stable region (see Fig. 7d). Although the uncertainty-aware Ra-
machandran plot represents the spatial displacement of atoms, the
selected amino acid residue will not be located in a stable area.

In general, when reviewing the Ramachandran plot of 1CGU,
we can identify more amino acid residues that are not located in
a stable area of the Ramachandran plot. This becomes more criti-
cal when considering the uncertainty spheres around each amino
acid residue in the Ramachandran plot. Here, a variety of amino
acid residues could leave stable areas when considering the spa-
tial movement of atoms. Our collaborator from the biochemical do-
main supported these findings and highlighted how the visualiza-
tion identifying this easily.

Overall, this example shows that 1CGT is a more stable protein
(especially in terms of the active site) than 1CGU. Resulting from
this, our approach is suitable to understand the stability of proteins
in direct comparison while considering the uncertainty included in
each of the computational models.

6.3. N-terminal domain of the human T-cell leukemia virus capsid
protein

HTLV-I is a virus that binds in the human body and can cause
leukemia or neural disorders. An important structure that is in-
volved in this process is the 1G03 protein [52]. The example was
chosen by our collaborator as it provides large positional uncer-
tainty that influences the research conducted with this protein. In
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Fig. 7. Cyclodectrin glycosyltransferase with and without mutagenesis. a) Uncertainty-aware visualization of 1CGT in ball view style containing the uncertainty hull and a
selection of a peptide on the active site. b) Uncertainty-aware Ramachandran plot of 1CGT with selection highlighted according to a). ¢) Uncertainty-aware visualization of
1CGU in ball view style containing the uncertainty hull and a selection of a peptide on the active site. b) Uncertainty-aware Ramachandran plot of 1CGU with selection
highlighted according to a). The selected amino acid residues in both proteins are identical, considering their ID.

(b)

Fig. 8. 20 Models of 1G03 protein shown with different styles of visualization. a) Superposition of all models as normally used in the biochemical domain. b) Superimposed
model with 30 uncertainty hull. ¢) Average model. d) Average model with 30" uncertainty hull.

order to understand the structure and function of the protein, re-
searchers aim to synthesize it. The peptide chain that builds this
protein is pretty clear but its three-dimensional folding in space
may vary according to a variety of factors such as temperature or
other binding proteins. In this context, there exist 20 simulations
that try to capture the three-dimensional folding process of 1G03.

Fig. 8 shows different visualization approaches for the 20 mod-
els of 1G03. Biochemists usually review these datasets using a su-
perposition visualization. Although all models can be reviewed at
the same time, the visualization is very cluttered. Especially inside
areas, where the depicted models disagree, it is hard to determine
the different models and how they are located in space, as shown
in Fig. 8a). Adding the proposed uncertainty hull helps biochemists
to examine the potential space where a protein can be located in.
Fig. 8 shows the superposition visualization with the 3o uncer-
tainty hull. Although we still use the superposition models in this
visualization, we can clearly show the user where proteins can be
located in space. We allow this visualization in the current frame-
work in order to provide a mechanism to relate the presented visu-
alization approach with already existing approaches. Fig. 8c) shows
the computed average model of the 1G03 protein. Here, the visu-
alization is less cluttered as only one model is displayed which is
composed of all 20 existing models. This visualization is almost
free of visual clutter but reduces the information captured in the
20 models. Based on the average visualization, we provide the final
visualization approach that allows us to show the average model in
combination with an uncertainty hull (Fig. 8d). Here, it can be seen
that the average model is covered by the 30 uncertainty hull. The
hull helps to indicate areas in the protein that hold high amounts
of positional uncertainty. As an example, the top region of the pro-
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tein holds high amounts of uncertainty which is indicated by the
large displacement of the uncertainty hull. Other regions, such as
the center of the protein hold a rather tight uncertainty hull, indi-
cating a low variability in the underlying models. This shows that
the presented visualization allows for an easy-to-understand rep-
resentation of disagreement in computed models of proteins.

Fig. 9 shows the top part of the 1G03 protein that was iden-
tified to hold large amounts of positional uncertainty. In this ex-
ample, the visualization of the protein was changed to a ball vi-
sualization, indicating the different types of amino acids. Here, we
are interested in the amino acid TRP. Fig. 9a) shows that several
points are not captured by the uncertainty hull. When increasing
o to 2 (Fig. 9b)), most of the existing models are included in the
uncertainty hull. For 30 Fig. 9c¢), all models are included in the un-
certainty hull. The hull indicates the center of the existing distribu-
tion of amino acids and shows their spread in space. Here, it can
be directly seen which direction is the most uncertain. Our col-
laborator confirmed that the visualization correctly indicates this
distribution, helping him understand the positional uncertainty.

The example shows that our approach suits understanding the
difference in multiple computational models. The number of mod-
els is not limited in terms of visual clutter as we are able to reduce
the number of visual primitives using an average model.

7. Discussion
7.1. Check of low-level requirements

As this project was developed in collaboration with domain sci-
entists in the biochemical domain, we continuously included the
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Fig. 9. Closeup of region in the 1G03 protein with high amounts of uncertainty. a) 1o uncertainty hull. b) 2o uncertainty hull. ¢) 3o uncertainty hull. d) Uncertainty-aware

Ramanchandran plot.

feedback of the users originating from an informal interview where
we presented the current status of our research. The visualization
approaches are the final version of this continuous review process
which was approved by the domain scientists.

To understand the improvements that the presented approach
makes, the list of requirements that assisted in generating the re-
quirements is reused. Here, the experts were asked to rate the pre-
sented approach against the 16 requirements formulated by Gill-
mann et al. [17]. The experts were asked to rate two molecule vi-
sualization tools that they frequently use. The visualization expert
chose PyMol and Protoshop, and the domain expert used PyMol
and VMD. Again, a Likert scale was used for the rating (1 require-
ment is not fulfilled, 5 requirement is absolutely fulfilled). The re-
sults can be found in Table 1. The color-coding shows in which cat-
egories, the presented tool was not able to fulfill the requirements
such as the remaining tools (red), fulfill the requirements equally
good as the remaining tools (yellow), or fulfill the requirements
better than the remaining tools. Here, the presented tool shows a
clear improvement.

First, the importance of the requirements has been used to cre-
ate a weighted average to rate each tool. The visualization expert
rated PyMol with a weighted average of 3.65, Protoshop with 3.38,
and our approach with 4.27 points. Here, our tool outperforms
both tools that were known to the user. On the other hand, the do-
main expert rated PyMol with 2.83, VMD with 2.68, and our tool
with 3.42. Again, the presented tool outperforms the used tech-
niques so far. When having a closer look into the ratings of the sin-
gle requirements, it can be observed that the visualization expert
rated 7 requirements with the same points as the known tools. For
9 requirements he rated the presented tool better than the stan-
dard tools. In addition, the domain expert found one requirement
that we were not able to fulfill as well as the standard tools (com-
patibility). The expert justified this with the further need to pro-
mote the presented tool as an open-source tool such that it can
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be used in the biochemical community. For nine requirements, our
tool was able to perform equally well as the standard tools. Fur-
ther, 6 requirements are fulfilled better in our tool than by the
tools chosen by our collaborators. This is the first indicator that
our tool provides an overall improvement for the visualization of
protein data under uncertainty.

In addition, our collaborators provided us with very motivating
comments on the approach that we summarize below:

o “I could use the framework right away. It provides me with the
most important visualization types that I need”

o “I like the easy to interpret visualization of the uncertainty in

all views. It does not require a massive amount of time to learn

them.”

“I would like to encourage you to include this visualization style in

an already existing visualization framework for biochemical data.”

We would like to take these comments as the first basis of a
user evaluation. Especially the last comment on the integration of
the tool will form a basis for further development. Here, we aim
to gather further user feedback when integrating our approaches
in an already existing framework.

7.2. Check of high-level requirements

We provided an uncertainty-aware interactive framework for
protein visualization. The system was designed by the require-
ments we agreed on with our domain experts. This work provides
an uncertainty-aware description of proteins that is able to repre-
sent anisotropic positional uncertainty. In the case where all di-
mensions hold the same quantification of uncertainty, the model
degenerates into an isotropic model. Still, the distributions along
one axis are assumed to be equal in both directions. Although this
may result in simplifications of atom position distributions that
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are not equal in both directions, it allows us to propagate the de-
scribed uncertainty along computational paths. We achieved this
propagation for the computation of ¢ and i angles within an
amino acid residue which reveals important information about the
structure of a protein. Although we did not use the propagation
for further properties that can be computed based on the atoms
of a protein, the general mathematical setup is not restrictive.
Further measures such as curvature or quality of surface can be
computed in an uncertainty-aware manner within the presented
framework (R1).

The described visualization procedures are integrated into
state-of-the-art visualization approaches that are used in the bio-
chemical domain. We showed that commonly used visualization
methods for proteins can be extended using our method. Although
there exist further representations that we did not show in this
manuscript, the presented framework allows their inclusion and
the mathematical setup does not restrict the underlying visual-
ization approaches. Solvent accessible surfaces and Ramachandran
plots, as well as other geometric representations, are part of the
presented visualization framework that was designed in a flexible
way, such that further visualization schemes can be included if re-
quested. We see this as a strong benefit, as biochemists are able
to use the provided visualization methods without requiring a long
training phase (R2). This is possible as the well-known protein rep-
resentations, simple interaction modalities, and well-ordered con-
trols create a familiar environment for users of the biochemical do-
main.

The uncertainty in most biochemical datasets results in a large
number of potential atom configurations. There exist a variety
of approaches that aim to superimpose visual representations of
these atom configurations resulting in visual clutter. In the pre-
sented framework we allow for an average visualization of all po-
tential atom configurations while outlining the potential spatial
distortion of atoms. This massively reduces visual clutter while
keeping the information of atom movement (R3). Due to validation
reasons, we also enabled the framework to show the generated un-
certainty hull around all potential models.

An important aspect of a proper visualization approach for the
biochemical domain is an interactive visualization framework. Of-
ten, multiple views are required to understand the functionality of
a protein in its entirety. Here, we provide an uncertainty-aware
visual analytics framework that allows biochemists to freely ex-
plore protein datasets that are affected by uncertainty (R4). Dur-
ing the development of the presented visualization approaches, we
highly focused on achieving a minimal time-consuming computa-
tional process in order to avoid waiting times and allow real-time
interaction. At this point, we want to highlight that the framework
will become available soon, either as a stand-alone solution or as
part of an already existing molecular visualization tool.

7.3. Further potential applications

Although we describe a specific topic where visualization ap-
proaches are applied, we obtained valuable knowledge about the
development of uncertainty-aware visualization approaches for
geometry-based visualizations in general. The mathematical setup
we described is, in general, not restricted to the biochemical do-
main and therefore we aim to describe potential further applica-
tions to create a motivation for further developments.

Our framework could also be used to understand the interaction
between proteins. In biochemical applications, surfaces of proteins
are compared in order to examine that a ligand is able to bind
to a protein. Here, our methodology could be beneficial to exam-
ine potential displacements in atom positions, resulting in possible
binding sites.
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Another application beyond chemistry could be ensemble visu-
alization of geometries in general. This is an important issue in
many applications such as industrial manufacturing or path com-
putations in simulations. Here, our visualization approach can be of
great benefit in order to examine differences and common grounds
of geometries in general.

At last, high-dimensional data analysis is an important topic.
In high-dimensional data analysis, data points can be affected by
uncertainty as well. The high-dimensional data points are usually
simplified using dimension reduction applications in order to be
able to review these points. When doing this, the uncertainty of
the original points propagates along with the performed compu-
tation and needs to be examined in the resulting reduced dataset.
Our approach could be of benefit to indicate the uncertainty of the
resulting points.

8. Conclusion and future work

In this work, we provide an uncertainty-aware interactive
framework for protein data. The framework is based on an
uncertainty-aware description of proteins that allows capturing
variations in the position of atoms due to imprecise measurement
or multiple model computations. This uncertainty can be propa-
gated in order to provide uncertainty-aware measures of protein
geometries. Based on this theory, we provide an uncertainty-aware
framework that allows domain scientists to review protein datasets
affected by uncertainty in their working environment using promi-
nent visualization approaches that are extended to indicate uncer-
tainty. The framework is highly interactive to allow for exploration.
We successfully tested the presented framework using real-world
datasets.

As future work, we aim to provide our proposed visualization
setup as open-source code and include them in molecular visual-
ization software such as the PDB visualization tool. We also aim to
constantly enlarge the set of included visualization types. Also, a
view comparing two atoms or amino acid residues, as well as com-
parisons of the same atom or residue between models, is planned.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.cag.2021.05.011.

CRediT authorship contribution statement

Robin G.C. Maack: Conceptualization, Methodology, Software,
Investigation, Resources, Writing - original draft, Visualization.
Michael L. Raymer: Validation, Investigation, Resources, Writing -
original draft. Thomas Wischgoll: Validation, Writing - review &
editing. Hans Hagen: Writing - review & editing. Christina Gill-
mann: Conceptualization, Formal analysis, Investigation, Writing -
original draft, Supervision.

References

[1] Olson AJ. Perspectives on structural molecular biology visualization: from past
to present. ] Mol Biol 2018;430(21):3997-4012. doi:10.1016/j.jmb.2018.07.009.

[2] Kozlikovad B, Krone M, Falk M, Lindow N, Baaden M, Baum D, et al. Visualiza-
tion of biomolecular structures: state of the art revisited. Comput Graph Forum
2017;36(8):178-204. doi:10.1111/cgf.13072.


https://doi.org/10.1016/j.cag.2021.05.011
https://doi.org/10.1016/j.jmb.2018.07.009
https://doi.org/10.1111/cgf.13072

R.G.C. Maack, M.L. Raymer, T. Wischgoll et al.

[3] Sacha D, Senaratne H, Kwon BC, Ellis G, Keim DA. The role of uncer-
tainty, awareness, and trust in visual analytics. IEEE Trans Vis Comput Graph
2016;22(1):240-9. doi:10.1109/TVCG.2015.2467591.

[4] Buxbaum E. Fundamentals of protein structure and function. 2nd ed. Springer
International Publishing Switzerland; 2015. ISBN 978-3-319-19919-1. doi:10.
1007/978-3-319-19920-7.

[5] Chung H-K, Braams BJ, Bartschat K, Csaszar AG, Drake GWF, Kirchner T, et al.
Uncertainty estimates for theoretical atomic and molecular data. ] Phys D
2016;49(36). doi:10.1088/0022-3727/49/36/363002. Publisher: IOP Publishing

[6] Karshikoff A, Nilsson L, Ladenstein R. Rigidity versus flexibility: the dilemma of
understanding protein thermal stability. FEBS ] 2015;282(20):3899-917. doi:10.
1111/febs.13343.

[7] Deryusheva E, Nemashkalova E, Galloux M, Richard C-A, Eléouét J-F, Kovacs D,
et al. Does intrinsic disorder in proteins favor their interaction with lipids?
Proteomics 2019;19(6). doi:10.1002/pmic.201800098.

[8] lakoucheva LM, Radivojac P, Brown (], O'Connor TR, Sikes ]G, Obradovic Z,
et al. The importance of intrinsic disorder for protein phosphorylation. Nucl
Acids Res 2004;32(3):1037-49. doi:10.1093/nar/gkh253.

[9] lakoucheva LM, Brown CJ, Lawson ]D, Obradovi¢ Z, Dunker AK. Intrin-
sic disorder in cell-signaling and cancer-associated proteins. ] Mol Biol
2002;323(3):573-84. doi:10.1016/S0022-2836(02)00969-5.

[10] Kozlowski LP, Bujnicki JM. MetaDisorder: a meta-server for the prediction
of intrinsic disorder in proteins. BMC Bioinform 2012;13(1):111. doi:10.1186/
1471-2105-13-111.

[11] Meng F, Uversky V, Kurgan L. Computational prediction of intrinsic disorder in
proteins. Curr Protoc Protein Sci 2017;88(1). doi:10.1002/cpps.28.

[12] Johnson DE, Xue B, Sickmeier MD, Meng ], Cortese MS, Oldfield CJ, et al. High-
throughput characterization of intrinsic disorder in proteins from the protein
structure initiative. ] Struct Biol 2012;180(1):201-15. doi:10.1016/j.jsb.2012.05.
013.

[13] Balasubramaniam D, Komives EA. Hydrogen-exchange mass spectrometry for
the study of intrinsic disorder in proteins. Biochim Biophys Acta (BBA) - Pro-
teins Proteom 2013;1834(6):1202-9. doi:10.1016/j.bbapap.2012.10.009.

[14] Al-Karadaghi S.. PDB File Format and Content. 2010. https://proteinstructures.
com/structure/protein-databank/.

[15] Green R., Zardecki C.. Guide to Understanding PDB Data. 2019. https://pdb101.
rcsb.org/learn/guide-to-understanding-pdb-data/dealing- with-coordinates.

[16] Lam H, Bertini E, Isenberg P, Plaisant C, Carpendale S. Empirical studies
in information visualization: seven scenarios. IEEE Trans Vis Comput Graph
2012;18(9):1520-36. doi:10.1109/TVCG.2011.279.

[17] Gillmann C, Leitte H, Wischgoll T, Hagen H. From theory to usage: require-
ments for successful visualizations in applications. In: IEEE VIS, creation, cu-
ration, critique and conditioning of principles and guidelines in visualization
(C4PGV), 5; 2016a. p. 4.

[18] Clifford AA. Multivariate error analysis: a handbook of error propagation and
calculation in many-parameter systems. Wiley; 1973. ISBN 978-0-470-16055-8.

[19] Johnson C. Top scientific visualization research problems. IEEE Comput Graph
Appl 2004;24(4):13-17. doi:10.1109/MCG.2004.20.

[20] Brodlie K, Allendes Osorio R, Lopes A. A review of uncertainty in data vi-

sualization. In: Expanding the frontiers of visual analytics and visualization.

London: Springer; 2012. p. 81-109. ISBN 978-1-4471-2804-5. doi:10.1007/

978-1-4471-2804-5_6.

Potter K, Rosen P, Johnson CR. From quantification to visualization: a taxonomy

of uncertainty visualization approaches. In: Uncertainty quantification in scien-

tific computing. In: IFIP Advances in Information and Communication Technol-
ogy. Berlin, Heidelberg: Springer; 2012. p. 226-49. ISBN 978-3-642-32677-6.
doi:10.1007/978-3-642-32677-6_15.

Dasgupta A, Kosara R. The need for information loss metrics in visualization.

In: Workshop on the role of theory in information visualization; 2010. p. 2.

Rheingans P, Joshi S. Visualization of molecules with positional uncertainty. In:

Groller E, Loffelmann H, Ribarsky W, editors. Data visualization '99. Eurograph-

ics. Springer; 1999. p. 299-306. doi:10.1007/978-3-7091-6803-5_30. ISBN 978-

3-7091-6803-5

Rasheed M, Clement N, Bhowmick A, Bajaj CL. Statistical framework for

uncertainty quantification in computational molecular modeling. IEEE/ACM

Trans Comput Biol Bioinform 2019;16(4):1154-67. doi:10.1109/TCBB.2017.

2771240.

Knoll A, Chan MKY, Lau KC, Liu B, Greeley ], Curtiss L, et al. Uncertainty

classification and visualization of molecular interfaces. Int ] Uncertain Quan-

tif 2013;3(2). doi:10.1615/Int.].UncertaintyQuantification.2012003950.

Skdnberg R, Falk M, Linares M, Ynnerman A, Hotz I. Tracking internal frames of

reference for consistent molecular distribution functions. IEEE Trans Vis Com-

put Graph 2021:1. doi:10.1109/TVCG.2021.3051632.

(21]

(22]

(23]

[24]

(25]

(26]

305

Computers & Graphics 98 (2021) 293-305

[27] Schulz C, Schatz K, Krone M, Braun M, Ertl T, Weiskopf D. Uncertainty visu-
alization for secondary structures of proteins. In: 2018 IEEE pacific visualiza-
tion symposium (PacificVis). IEEE; 2018. p. 96-105. doi:10.1109/PacificVis.2018.
00020. ISSN: 2165-8773

[28] Lee CH, Varshney A. Representing thermal vibrations and uncertainty in
molecular surfaces. In: Proc. SPIE 4665. International Society for Optics and
Photonics; 2002. p. 80-90. doi:10.1117/12.458813.

[29] Sasisekharan V. Stereochemical criteria for polypeptide and protein structures.
In: Collagen. Madras, India: Wiley; 1962. p. 39-78.

[30] Ramakrishnan C, Ramachandran GN. Stereochemical criteria for polypeptide
and protein chain conformations: II. Allowed conformations for a pair of pep-
tide units. Biophys ] 1965;5(6):909-33. doi:10.1016/S0006-3495(65)86759-5.

[31] Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of
polypeptide chain configurations. ] Mol Biol 1963;7:95-9. doi:10.1016/
s0022-2836(63)80023-6.

[32] Maack RGC, Hagen H, Gillmann C. Uncertainty-aware Ramachandran plots. In:
2019 IEEE pacific visualization symposium (PacificVis); 2019. p. 227-31. doi: 10.
1109/PacificVis.2019.00034. ISSN: 2165-8773

[33] Gillmann C, Wischgoll T, Hagen H. Uncertainty-awareness in open source vi-
sualization solutions. In: IEEE VIS, vis in practice, 2016; 2016b. p. 5. https:
|[corescholar.libraries.wright.edu/cse/487

[34] Berman HM, Westbrook ], Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The
protein data bank. Nucl Acids Res 2000;28(1):235-42. doi:10.1093/nar/28.1.
235.

[35] Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF
ChimeraX: structure visualization for researchers, educators, and developers.
Protein Sci 2021;30(1):70-82. doi:10.1002/pro.3943.

[36] Porollo A, Meller ]. Versatile annotation and publication quality visualization of
protein complexes using POLYVIEW-3D. BMC Bioinform 2007;8(1):316. doi:10.
1186/1471-2105-8-316.

[37] Piotr R.. iMol Overview. 2007. https://www.pirx.com/iMol/overview.shtml.

[38] Guex N, Peitsch MC. SWISS-MODEL and the Swiss-Pdb viewer: an environ-
ment for comparative protein modeling. Electrophoresis 1997;18(15):2714-23.
doi:10.1002/elps.1150181505.

[39] Gillmann C, Wischgoll T, Hamann B, Ahrens ]. Modeling and visualization of
uncertainty-aware geometry using multi-variate normal distributions. In: 2018
IEEE pacific visualization symposium (PacificVis). IEEE; 2018. p. 106-10. doi: 10.
1109/PacificVis.2018.00021. ISSN: 2165-8773

[40] Carugo O. How large B-factors can be in protein crystal structures. BMC Bioin-
form 2018;19(1):9. doi:10.1186/s12859-018-2083-8.

[41] Wang B, Shi W, Miao Z. Confidence analysis of standard deviational ellipse and
its extension into higher dimensional euclidean space. PLoS One 2015;10(3).
doi:10.1371/journal.pone.0118537.

[42] Furfey PH. A note on Lefever's “standard deviational ellipse”. Am ] Sociol
1927;33(1):94-8.

[43] Gong ]. Clarifying the standard deviational ellipse.
2002;34(2):155-67. doi:10.1111/j.1538-4632.2002.tb01082.x.

[44] Jones MW. 3D Distance from a Point to a Triangle. Technical Report CSR-5.
Department of Computer Science, University of Wales Swansea; 1995.

[45] Pesce A, Dewilde S, Kiger L, Milani M, Ascenzi P, Marden MC, et al. Very high
resolution structure of a trematode hemoglobin displaying a TyrB10-TyrE7
heme distal residue pair and high oxygen affinity 11 Edited by K. Nagai. ] Mol
Biol 2001;309(5):1153-64. doi:10.1006/jmbi.2001.4731.

[46] Yuan Z, Bailey TL, Teasdale RD. Prediction of protein B-factor profiles. Proteins:
Structure, Function, and Bioinformatics 2005;58(4):905-12. doi:10.1002/prot.
20375.

[47] Schroeder W, Martin K, Lorensen B. The visualization toolkit-an objec-
t-oriented approach To 3D graphics. 4th ed. Kitware, Inc.; 2006. ISBN
978-1-930934-19-1.

[48] Wald I, Johnson G, Amstutz ], Brownlee C, Knoll A, Jeffers ], et al. OSPRay - a
CPU ray tracing framework for scientific visualization. IEEE Trans Vis Comput
Graph 2017;23(1):931-40. doi:10.1109/TVCG.2016.2599041.

[49] The Qt Company. QT. 2020. qt.io.

[50] Klein C, Schulz GE. Structure of cyclodextrin glycosyltransferase refined at
2.0 A resolution. ] Mol Biol 1991;217(4):737-50. doi:10.1016/0022-2836(91)
90530-].

[51] Klein C, Hollender ], Bender H, Schulz GE. Catalytic center of cyclodextrin
glycosyltransferase derived from X-ray structure analysis combined with site-
directed mutagenesis. Biochemistry 1992;31:7. doi:10.1021/bi00152a009.

[52] Cornilescu CC, Bouamr F, Yao X, Carter C, Tjandra N. Structural analysis of
the N-terminal domain of the human T-cell leukemia virus capsid protein 11
Edited by M. F. Summers. ] Mol Biol 2001;306(4):783-97. doi:10.1006/jmbi.
2000.4395.

Geograph Anal


https://doi.org/10.1109/TVCG.2015.2467591
https://doi.org/10.1007/978-3-319-19920-7
https://doi.org/10.1088/0022-3727/49/36/363002
https://doi.org/10.1111/febs.13343
https://doi.org/10.1002/pmic.201800098
https://doi.org/10.1093/nar/gkh253
https://doi.org/10.1016/S0022-2836(02)00969-5
https://doi.org/10.1186/1471-2105-13-111
https://doi.org/10.1002/cpps.28
https://doi.org/10.1016/j.jsb.2012.05.013
https://doi.org/10.1016/j.bbapap.2012.10.009
https://proteinstructures.com/structure/protein-databank/
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/dealing-with-coordinates
https://doi.org/10.1109/TVCG.2011.279
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0018
https://doi.org/10.1109/MCG.2004.20
https://doi.org/10.1007/978-1-4471-2804-5_6
https://doi.org/10.1007/978-3-642-32677-6_15
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0022
https://doi.org/10.1007/978-3-7091-6803-5_30
https://doi.org/10.1109/TCBB.2017.penalty -@M 2771240
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2012003950
https://doi.org/10.1109/TVCG.2021.3051632
https://doi.org/10.1109/PacificVis.2018.00020
https://doi.org/10.1117/12.458813
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0029
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0029
https://doi.org/10.1016/S0006-3495(65)86759-5
https://doi.org/10.1016/s0022-2836(63)80023-6
https://doi.org/10.1109/PacificVis.2019.00034
https://corescholar.libraries.wright.edu/cse/487
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1002/pro.3943
https://doi.org/10.1186/1471-2105-8-316
https://www.pirx.com/iMol/overview.shtml
https://doi.org/10.1002/elps.1150181505
https://doi.org/10.1109/PacificVis.2018.00021
https://doi.org/10.1186/s12859-018-2083-8
https://doi.org/10.1371/journal.pone.0118537
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0042
https://doi.org/10.1111/j.1538-4632.2002.tb01082.x
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0044
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0044
https://doi.org/10.1006/jmbi.2001.4731
https://doi.org/10.1002/prot.20375
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00110-2/sbref0047
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.1016/0022-2836(91)90530-J
https://doi.org/10.1021/bi00152a009
https://doi.org/10.1006/jmbi.2000.4395

	A framework for uncertainty-aware visual analytics of proteins
	1 Introduction
	2 The role of uncertainty in molecular data
	2.1 Biochemical basics
	2.2 Uncertainty in biochemical data
	2.3 Requirements for uncertainty-aware protein visualization

	3 Related work
	3.1 Uncertainty-aware protein visualization
	3.2 Uncertainty-aware protein visualization software

	4 Uncertainty-aware description and properties of proteins
	4.1 Uncertainty-aware description of molecular data
	4.2 Uncertainty-aware computation of dihedral angles

	5 A Framework for uncertainty-aware visual analytics of proteins
	5.1 Uncertainty-aware volume visualization
	5.1.1 3D protein visualization types
	5.1.2 Creating the uncertainty scalar field
	5.1.3 Distance of a voxel to an atom under uncertainty
	5.1.4 Filling the scalar field
	5.1.5 Protein representations

	5.2 Uncertainty-aware Ramachandran plot
	5.3 Uncertainty-aware statistics view
	5.4 Interaction

	6 Results
	6.1 Monomeric hemoglobin from the trematode paramphistomum epiclitum
	6.2 Cyclodextrin glycosyltransferase
	6.3 N-terminal domain of the human T-cell leukemia virus capsid protein

	7 Discussion
	7.1 Check of low-level requirements
	7.2 Check of high-level requirements
	7.3 Further potential applications

	8 Conclusion and future work
	Declaration of Competing Interest
	Supplementary material
	CRediT authorship contribution statement
	References


