

Parameter Space Visualization for Large-scale Datasets Using

Parallel Coordinate Plots

Kurtis Glendenning; Wright State University, 3640 Colonel Glenn Hwy, Dayton, Ohio, USA

Thomas Wischgoll; Wright State University, 3640 Colonel Glenn Hwy, Dayton, Ohio, USA

Jack Harris; Wright Patterson Air Force Base; Dayton, Ohio, USA

Rhonda Vickery; Engility Corporation; Dayton, Ohio, USA

Leslie Blaha; Wright Patterson Air Force Base; Dayton, Ohio, USA

Abstract

Visualization is an important task in data analytics, as it allows

researchers to view patterns within the data instead of reading

through extensive raw data. Allowing the ability to interact with the

visualizations is an essential aspect since it provide the ability to

intuitively explore data to find meaning and patterns more

efficiently. Interactivity, however, becomes progressively more

difficult as the size of the dataset increases. This project begins by

leveraging existing web-based data visualization technologies and

extends their functionality through the use of parallel processing.

This methodology utilizes state-of-the-art techniques, such as

Node.js, to split the visualization rendering and user interactivity

controls between a client-server infrastructure without having to

rebuild the visualization technologies. The approach minimizes data

transfer by performing the rendering step on the server while

allowing for the use of HPC systems to render the visualizations

more quickly. In order to improve the scaling of the system with

larger datasets, parallel processing and visualization optimization

techniques are used. This work will use parameter space data

generated from mindmodeling.org to showcase our methodology for

handling large-scale datasets while retaining interactivity and user

friendliness.

Keywords: Parameter space visualization, parallel coordinate

plot, parallel processing, D3, JavaScript, web browser visualization

Introduction

The ability to do rapid visual assessments of parameter spaces has

the potential to change the workflow for both model simulation and

model fitting/parameter recovery. It enables the rapid identification

of input parameters that result in similar output data or model

behaviors. This allows researchers to eliminate redundant input

parameters for more efficient use of modeling and simulation

computational resources. For example, should two parameters

exhibit a strong correlation, one might be held constant while the

other varied in order to capture all the unique model behaviors.

Further, early visual assessment of the parameter space means that

ineffective or incorrect models may be rapidly identified and

eliminated from study. This again results in effective use of both

experimenter and computational time. Finally, parameter space

visualizations can reveal unexpected relationships between the

parameters and model behavior. If the behavior is incorrect, errors

in model design or in model may be more easily found. If the

behavior is novel, parameter space visualization will have resulted

in new hypotheses or expanded research findings.

Web-based visualizations are of interest in this application area as

they can be directly integrated into the high-performance computing

(HPC) environment. At the same time, they can make the

implementation and use of parameter space visualization easy for

any level of visualization programmer. The potential for interacting

with the data and feeding any resulting visually-identified parameter

constraints directly into the modeling and simulation process would

further improve the modeling workflow.

The approach described in this paper targets this area: web-based

visualization directly integrated with the HPC job scheduling

environment, optimized for a fast and interactive user experience. It

is based on existing visualization tools, such as Data-Driven

Documents (D3), combined with Node.js to devise a parallel

implementation for maximal performance. Specifically, parallel

coordinate plots worked well in the past for identifying correlations

between variables so it was chosen as the first prototype

visualization algorithm for this framework[16]. While standard

tools, such as D3 and Plotly already provide common visualization

algorithms, such as parallel coordinate plots, the amount of data

these tools can handle is typically limited. In our experiments,

datasets that exceed 500,000 data points can no longer be handled

by these tools. Hence, an approach is needed that is capable of

handling datasets beyond that limit. There are multiple bottlenecks

that need to be overcome for this to be accomplished. Specifically,

the amount of memory available on the system needs to be

considered as well as the computational resource available. At the

same time, transferring the dataset from the server to client can take

a considerable amount of time. By utilizing a parallel server-side

approach, all these bottlenecks can be avoided. The parallel

approach only processes parts of the data at a time thereby reducing

the memory footprint. Using the HPC resource directly provides

more computational resources to the visualization algorithm. At the

same time this approach avoids the transfer of the entire dataset and

instead only requires a significantly smaller amount of data to be

transferred from the server to the client. Overall, this enables the

approach to process significantly larger datasets in a shorter period

of time.

Related Work

Big data has been a booming topic for several years. Visualization

is one key aspect of solving today’s big data challenges as it is

necessary to understand and analyze data efficiently. Traditional

visualization techniques do not necessarily suffice for big data. They

are often not equipped to handle large sample sizes and generally do

not account for data being too large to fit into main memory. The

process of visualization needs to be revamped to accommodate the

ongoing growth of data.

Using web-based techniques for visualization tools can help target a

broader audience. Bostock et al. proposed a JavaScript library,

called Data-Driven Documents (D3), which serves as a flexible

infrastructure for many types of visualizations[2]. Our system will

provide tools built on the D3 library.

 An upcoming visualization service, known as Plotly, provides

a number of web based visualizations with many customization

tools available. This system uses a client-server model to produce

highly interactive visualizations for data [10]. While the

generalization of various visualizations provided a flexible and

efficient way to view data in multiple types of plots, the rendering

process was not capable of handling large datasets. When testing a

500,000 point dataset with Plotly, it failed to respond after several

minutes of processing. The proposed methodology in this paper

successfully rendered the largest test case that we were able to

provide, consisting of 246 million points.

Data can come in many different forms and sizes. High-dimensional

data, being one variation, is a bit more difficult to visualize due to

the inability to physically see more than three dimensions. Parallel

coordinates[14] have proven to be a very sufficient visualization

technique for this task. The basic idea is to present N dimensional

data of the attribute space by mapping N equidistant parallel axes to

the two-dimensional space. The axis of each dimension represents a

property. The axis of the corresponding attribute values range from

minimum to maximum uniform distribution. Thus, each data item

can be used in accordance with its property values in a line segment

on N parallel axes.

When large datasets are visualized using parallel coordinates, it can

cause confusion due to a large number of overlapping lines. For this

Peng has presented the concept of clutter-based dimension

reordering. This concept allows the algorithm to reduce the clutter

of parallel coordinate plots without sacrificing information in the

visualization[9]. Siirtola has introduced two browser based

techniques for manipulating parallel coordinate plots[11]. The first

technique uses polyline averaging to summarize a set of polylines.

The second provides a visualization for correlation coefficients

between polyline subsets in order to help the user discover new

information. Zhao et al. proposed a technique of rearranging

variables to better identify patterns of interest[15]. This work

contained a query tool that enabled the user to describe a specific

target pattern to be displayed. Johansson et al. introduced a method

to simultaneously examine the relationship of a single dimension to

many dimensions. To allow the user to quickly view different

combinations of dimensions, the single dimension being used can

interactively be swapped with another[7]. Hauser et al. have

demonstrated and expanded on some of the intuitive features of

parallel coordinate plots[5]. Some of the features presented in these

works are used in the proposed system to showcase that our methods

can accommodate more advanced visualizations.

 One of the many difficulties of visualizing big data is that

traditional visualization techniques require all of the data to be held

in memory. Ahrens et al. have developed a methodology for

handling datasets that are too large to fit into memory. They

accomplish this by streaming data to the visualization, eliminating

the size limitation and gaining some efficiency from running

visualizations in a small memory space resulting in higher cache

hits[1]. Streaming data is used in the work described in this paper

alongside data chunking in order to compare efficiency. These two

methods of breaking down data have resulted almost identical in

speed. Out–of-core techniques use memory only as their secondary

storage medium. All data is maintained on the hard drive and the

main memory serves as cache for that data. As such these techniques

allow the visualization algorithm to be able to process datasets that

exceed the main memory[13].

 In some cases, big data visualizations are created by either

rendering subsets of data or by mining features of data and rendering

those results. Goecks et al. have developed Trackster, which is a tool

that couples analysis and visualization to allow interactive

visualizations for large datasets[4]. While this can efficiently

produce a visualization, it does not actually render a large amount

of data. In fields of study that are still in their early stages, such

analysis tools for mining and subsetting may not exist, therefore

making this technique ineffective. Instead these researchers are

trying to view the entire parameter space in order to develop the

generalizations of their data.

 Pretorius et al. have created a system for exploring parameter

spaces for image analysis. In this work, the paradigm of parameter

sampling is changed in order to incorporate large parameter sweeps

in a more efficient way[11]. The proposed system extends this

methodology by doing parameter sweeps using multiple models and

comparing their outputs through a parallel coordinates visualization.

Zhou et al. developed several web-based visualization frameworks

combined with pre-processing tools to provide a way for domain

specialists to interpret their data[16]. The framework contained

parallel coordinate plots and heat maps that could be used to present

identification-confusion matrix data.

Methodologies

The software portion of this system was developed from an open

source parallel coordinate plot library built on top of Data-Driven

Documents (D3). The baseline implementation will be overviewed,

followed by the details for the performance improvements including

client-server modelling, parallel rendering and line binning.

Baseline

The baseline of this implementation uses Parcoords, an open source

D3 library specifically designed for building parallel coordinate

plots. Parcoords is a client-side JavaScript library that internally

manages the creation of HTML tags, data manipulation, and

rendering[8]. Many of the basic tools associated with parallel

coordinate plots can be used with a simple flag on instantiation.

Some of these features include reordering, removing, brushing, and

statistical coloring of axes. Figure 1 illustrates these interaction

features and their results on the visualization that are described in

more detail below as well. Using any of these features will

automatically refresh the visualization with the new parameters.

 Reordering is a simple feature that allows the users to organize

the axes to their liking. To do this, the user can click and drag an

axis to a point in between two other axes. The plot will then be

refreshed with the new arrangement. When two dimensions are not

direct neighbors, it is sometimes hard to see their relationship. This

feature provides a way to select which axes are adjacent to provide

the most useful insight. Reordering axes can also help to better

organize the plot for a cleaner visualization.

 Some axes may prove to be of less importance to the user.

Removing these will both minimize the clutter in the visualization

and improve the refresh speed by reducing the amount of the data

being rendered. Parcoords provides an API method for removing

axes, which is connected to a list of existing axes. The user can

toggle each of the axes individually to remove or reintroduce them.

 Brushing is a very powerful tool for parallel coordinate plots.

It allows the user to select a portion of an axis, or multiple axes. This

will then translate to upper and lower bounds based on the scale of

the axis being brushed. These bounds are used to limit the number

of data points being rendered to the plot. By using this tool, a user

can select a range of values on one axis to more clearly see where

they fall on the other axes. While rendering with active brushes, the

system will skip any data point with a value outside of these bounds,

drastically reducing both the clutter of the plot and the rendering

time.

 Lastly, another powerful tool is statistical coloring. This feature

provides a color scheme for the lines representing each tuple in the

dataset. The color scheme is based on a single axis specified by the

user via clicking the name label at the top. Then by mapping the

value of a tuple for the specified axis to a color range, the color of

each line will reflect the tuple’s position on that axis. As mentioned

before, it is hard to see the relationship of two dimensions when they

are not directly neighboring. Statistical coloring provides a way to

compare one specified axis with all other dimensions in the plot.

 Altogether Parcoords provides an easy to use JavaScript API

for creating parallel coordinate plots with some commonly used

features. The infrastructure of using this library out of the box is

sufficient for very small datasets, but presents several major

problems when moving into larger datasets. Since this is a client-

side JavaScript library, the users will need to download the data they

wish to plot from a database server. This becomes unreasonable

even when talking about data as small as one hundred megabytes,

while most times large-scale datasets start at gigabytes or terabytes.

Even if the user manages to wait for such a large dataset to

download, most client machines are not equipped to handle data

manipulation and rendering at this scale. The following sections will

discuss the new infrastructure model and performance

improvements used to allow the system to handle larger datasets.

Figure 1. Photos of the resulting visual after making changes to the original plot, which is represented in the top left. The top

right has reordered IV_IV1 and IV_IV2. Bottom left has brushed a section of DV_sum. Bottom right has changed the statistical

coloring to interpolate IV_IV1.

Client-Server Model

The first problem addressed is the overwhelming data transfer. To

reduce the network load this system moves the rendering step to the

server where the data is stored. By utilizing a state-of-the-art engine

like Node.js, the same JavaScript files used on the front-end can be

run on the back-end. Another benefit of using Node.js is that it

provides a module, jsdom, which simulates a web browser

environment. With these technologies the implementation of the

rendering methods does not need to be altered because it thinks that

it is rendering to an ordinary webpage.

 In order to retain the controls on the user interface of the

webpage, some modifications were made to the visualization

library. Parcoords is built for the client-side to manage both the

HTML tags and image rendering. In order to separate the controls

from the data management and visualization refresh, this library was

split into two files, one for the server and one for the client.

Parameters are generated from user input of reordering, removing,

brushing, or statistically coloring axes and are given to the server as

input in order to generate the refreshed image.

 Parcoords generates two components in the rendering step.

These are the visualization and the dimension axes. The

visualization is rendered to an HTML canvas, which temporarily

stores the image in memory. The axes are scalable vector graphic

(svg) elements, which is required for enabling the control features.

The svg tags can directly translate to a string to be sent to the client,

but the canvas must be converted to a static image format. Another

Node.js module, canvas, is used to convert the temporary canvas

image into a string format. These two strings then become the output

that the server sends to the client. The client script can reconstruct

the visualization on the webpage by simply pasting the DOM string

into a designated div element and drawing the image string to an

underlying canvas. Initially, the visualization library generates an

image and then waits for input to refresh. Since the redesigned

workflow only generates one image per run, the server script will

terminate immediately after the first render and return the output

results to the client.

Parallel Rendering

In most visualizations, rendering one part of the image is

independent of rendering another part. In the case of parallel

coordinate plots, each line and even each individual line segment

can be considered independent of one another. By exploiting this

Figure 2. Demonstration of how the database chunking is performed to allow parallel rendering. By dividing by columns, the

processes do not overlap in the visualization space, making the merge simple and efficient.

fact one can distribute the work among parallel rendering processes

for dramatically faster rendering speeds.

 Node.js is run on a single core, so threading will not produce

parallel processing. Instead a node-module, child process, was used

to fork new Node.js instances on a separate processing core. This

required some modification of the server workflow. First the server

rendering script was reinstated as the child process, while a master

script was developed to fork sub processes and manage the

distribution of work. Inter-process communication can create

substantial overhead if a large amount of data is transferred. In order

to keep this at a minimum, each process queries for its own data

instead of the master process distributing the data to the children.

 As it was stated before, each line rendered is independent of

another allowing work distribution to be flexible. Two general

approaches to distributing work would be to group by number of

rows or number of columns. To divide by number of rows, the

master script would have to render a full sized image in each process

since the position on the axes where the lines will fall cannot be

predetermined. If divided by columns, the length of the image

rendered in each process can be shortened, creating a smaller

amount of overhead for communicating results. For this reason,

distributing by columns is primary, although distributing by rows

can still occur if necessary. This would occur in a case where

number of rows is large but number of columns is small. Figure 2

shows a graphical representation of how the task gets subdivided

among the processes. Hence, dividing the image to be created allows

the master script to divide the rendering task between the cores in a

relative straight forward fashion. Sub processes are forked to create

a new rendering task to generate the sub-image between two axes of

the parallel coordinate plot. Only in cases where this would create

an imbalance on the load of the involved processes, which typically

only occurs toward the end of the rendering step with larger number

of columns, the rendering task may get broken up by rows to ensure

an even distribution of the load.

 In the master script, a global parameter is set to specify the

number of processing cores to use. Using this value a controller

manages when to start new processes and handle output.

Experiments were conducted to identify optimal strategies for load

balancing. The growth rate of data points to render time is linear,

inferring that many small workloads will not yield better results than

fewer large processes. Creating more processes than the number of

allocated processing cores will be slower since some processes will

have to wait for an open core to run on. To further improve the

efficiency, the controller evenly spreads the work between the

processing cores so that none are substantially slower than the rest.

Basically, there are different approaches of balancing the load

among the processors. On the one hand, one could create one

process per processor and task that process with generating as many

subsections of the image as necessary. On the other hand, one

process could be generated for each subsection of the image. In

either case, the master script needs to monitor the processors

involved to either create a new process or task an existing process

with a new subsection. Due to the fact that typically the number of

axes is significantly larger than the number of available processors

in our test scenario, balancing the load this way works very

effectively and only toward the end of rendering the image the

rendering tasks have to be broken up by row. Both parallelization

approaches mentioned above were implemented and tested. As can

be seen from the results it turns out that creating less number of

individual process improves the rendering speed considerably as it

avoids the overhead of creating and removing a larger number of

processes.

 To further improve the overall performance of the approach,

different access schemes were implemented to fully support larger

datasets. When there are many columns and many rows, it may

occur that one process does not have enough memory to fit an entire

column of data. In this case the system will stream data from the

database, handling one data point at a time. This reduces the amount

of memory that a process needs to store and negates the idle time in

transferring data from the database to the process as a data structure.

In practice this methodology has proved to be almost equivalent in

speed and scale as taking the whole dataset as a chunk, but it allows

for dataset sizes to be larger than the process memory.

 A side effect of taking the streaming route is that the scaling

for the axes must be done outside of the Parcoords library since it

will not have all of the data available at once. Scaling for each axis

is performed by mapping the range between the max and min values

to the height of the image being produced. For most cases this is a

fast query, but in testing with an SQL database (in this case MySQL

version 14.14, distribution 5.6.12) it was found that unindexed

columns in a database are extremely slow at finding max and min.

To account for datasets that have this many dimensions, the max and

min are saved on the client side so that this lookup only occurs once

as a preprocessing step before the first render.

Line Binning

Constructing visualizations is a very slow process for a computer

when comparing to simple math on a processor. Often times

improving rendering speed consists of identifying criteria to find

shortcuts around drawing every component. In the case of parallel

coordinate plots, one can recognize that there are a limited number

of lines between any two given axes for a given image resolution.

Figure 3. Precision of rendering can at best draw a line from

a pixel in axis A to a pixel in axis B. Although the actual point

values in the red and green line are slightly different, they

will be drawn in the exact same place in the visualization.

This provides a way to reduce the number of lines drawn by

avoiding rendering the same line twice.

 Parallel coordinate plots have a static height value which

translates into a number of pixels on the screen. Each line segment

in this visualization is drawn from one axis to the next or from a

pixel in axis A to a pixel in axis B as shown in Figure 3.When

scaling a value to the axis in the visualization, it often occurs that

two or more lines will fall in the same location, i.e. connect the exact

same pixels on the respective axes. As a result, the user is not able

to distinguish one from the other. Thus we can infer that the

maximum number of unique lines that can exist is equal to the

product of the height of two axes, measured in pixels. Our system

draws a height of four hundred pixels making the maximum number

of unique lines 400 by 400, or 160,000. This of course is only the

worst case scenario. On average the algorithm would have to draw

much fewer lines depending on the variety of the data.

In order to identify the fact that there is multiplicity for a given line,

the algorithm sets up a table based on the height values on each of

the two involved axes. In this specific implementation the height

values can range from 0 to 400 so that the overall number of possible

combinations is 160,000. A hash-function is used to translate the

height values of the two end points of a line to the index within this

table to identify whether this line was encountered before or not.

Since this test is merely based on the end points of the line, it is fairly

efficient, especially when compared to the rendering process for the

entire line using, for example, the Bresenham algorithm. Due to the

fact that additional lines can effectively be skipped entirely by this

simple look-up, the computational savings can be quite significant.

When using statistical coloring, it does not suffice to draw the first

line and skip the rest. In order to retain an accurate color scheme,

the system must accumulate the average color value of each existing

line. The hexadecimal color value of each line can be converted into

an integer and used to efficiently calculate an average. Once finished

iterating through the data, each existing line is drawn once using the

averaged color value. This improvement has a very strong effect on

large datasets as it changes the growth rate to match that of integer

addition instead of canvas rendering. Whether the dataset contains

200k, 1,000k or even 1,000,000k points, the maximum number of

lines drawn will be 160k. It is important to note that the lines that

are skipped are lines that would only be drawn multiple times with

the exact same start and end point, i.e. the exact same line. By

accumulating the color values of all these identical lines, the final

image is in no way different from the one that would have been

obtained by drawing all lines individually; it only saves on

computational time.

Interactive Components
When visualizing data with parallel coordinate plots, the

interactive features that allow one to analyze the data further by

specific interactive features, such as eliminating columns, brushing

along one axis to select sub-sections of the data, or applying color

coding. These features are key to the ability to successfully

investigate the dataset at hand. It is important to note that this

parallel rendering approach retains those abilities. Axes of the

parallel coordinate plots are listed in a separate section right below

the visualization where the user can enable and disable them

specifically.

The rendering of the user interface elements is decoupled from the

rendering of the actual parallel coordinate plots. The user interface

elements are drawn using svg elements, whereas the visualization is

added as an image. This decoupling allows the web interface to

retain the interactive features. Hence, the user can still apply color

coding or brush along an axis in exactly the same way as one would

with the original, sequential implementation of the parallel

coordinates plot. As such the user still has the capabilities one would

expect for filtering to reduce the clutter that can occur in a parallel

coordinate plot.

Results

The implementation outlined resulted in a fully functional web

based visualization tool, connected to mindmodeling.org. Users can

initiate this visualization tool by visiting the results section of the

desired job and simply clicking the Refresh button. Immediately

after opening the results tab, some options are available to the user

in order to make specifications for the first rendering. These options

include selecting active columns and a number of data points to

display. After the first visual is created, other interactive options will

be available on the parallel coordinate plot such as brushing and

statistical coloring. To allow the user to make several modifications

before updating the image, no refresh request will be sent until the

user clicks the Refresh button again. Based on our experimental test

runs, a render time estimator is shown below the plot that updates

are every interaction with the controls.

The algorithms were tested on an Apple MacBook Pro with Intel

Core i5 and 4GB of memory for the client. The server consists of 16

Intel Xeon processors running at 2.27 GHz with 32 GB of RAM.

For the experiments, only 8 CPUs were used at a time to not

completely block the server from performing any other tasks. The

algorithm was tested with 8 different data sizes. Each test run was

performed five times. The running time for each test run was mostly

identical for each dataset size with almost non-existing variance.

The test data for this system resulted from large scale modeling and

simulation of two computational cognitive models (Adaptive

Control of Thought-Rational and the Linear Ballistic Accumulator).

The goal of the study was thorough model comparison, so the

simulations entailed wide sampling of the parameter spaces. This

sample of data consisted of 246 million points on 155 dimensions,

totaling 1.9 gigabytes of data. More details about the simulations

can be found in Fisher et al.[3]. A number of dataset sizes were

tested at each stage of development and recorded for discussion.

While the number of data points is listed, it is important to note that

there were 155 dimensions in the tested dataset. A high dimensional

dataset is handled differently than a low dimensional one, although

for this system the rendering speeds are relatively similar. The first

stage recorded was using the standard visualization tools on the

server side. Initially this only uses one core, so the results should be

comparable to running on the client side without the network data

transfer. After parallelizing the rendering process, two scenarios

were considered. Minimizing the data distribution size and creating

many processes versus maximizing the distribution size and creating

few processes. The results of both are shown in Table 1, represented

by min col and max col respectively. Lastly, line binning has been

added to each of these to further compare rendering speeds.

The single core rendering speed has a very large growth rate and

eventually breaks due to lack of memory. The baseline visualization

tool (1-core in Table 1) can render 23 million points in roughly 437

seconds. The performance numbers for these single core runs are

effectively identical to the rendering times that can be expected from

the original parcords implementation as it is using the exact same

code. These numbers were used as the baseline instead of the ones

obtained via running parcoords on the client to ensure the same type

of computing environment is used. When using parallelization, the

system becomes capable of rendering any size of data and can render

small data sizes quickly. The downside is that the growth rate of

speed is still quite large. This stage (8-core, Max Col Column in

Table 1) can render the same 23 million point dataset in 82 seconds,

an improvement of 4 times. 8-core, Min Col represents

parallelization using many processes of minimal size. It is obvious

that the overhead from creating more processes harshly affects the

rendering speed since rendering 23 million points takes over 120

seconds as opposed to 82 using 8-core, Max Col. Line binning

slightly reduces the small dataset speeds, but greatly reduces the

growth rate. This result backs the methodology discussed and is

capable of rendering 23 million data points in only 23.7 seconds

when combined with maximizing data distribution, an improvement

of 20 times over the baseline system. The largest dataset tested on

the system contained 246 million points and successfully rendered

in 171 seconds. Figure 4 shows least-square-fitted lines for a plot of

the numbers shown in table 1. This graph shows nicely how much

faster the parallel rendering performs as the dataset size grows. It

should be noted that the performance of the Max Col approach

performs too similarly no matter whether the data base is accessed

using the streaming method or not for the dataset sizes tested so far

to be distinguishable in the plot. This is why only one of the lines is

visible in the graph.

 The improvement in performance of the visualization

algorithm makes it easier to use for our collaborative partners thanks

to the increased interactive capabilities and ability to process the

larger datasets that were impossible to visualize using existing

approaches. By using the current implementation of the described

algorithm, our collaborators were already able to identify

characteristics within the data which they were not able to do before.

Due to the fact that it is directly integrated with the web interface

that the users of the mindmodelling.org system use to track the

progress of their computations, the visualization is ready to use

within that same interface. As a result it is very easy to use and ready

to deploy by a relatively large user base.

 While this system is demonstrated with parallel coordinate

plots for parameter space data, the general concept can also be

applicable to other types of visualizations. The distribution of work

in the parallelization process will generally be specific to the type of

visualization but the infrastructure can be applied very broadly.

Future Work

In the future we will extend our framework to include additional

visualization algorithms thereby expanding the capabilities as well

as providing further functionality to our user base. Moreover, the

framework will be scaled up so that it is able to take advantage of

more computational resources. We have an in-house high-

performance cluster available to this project that consists of 2048

parallel cores. We expect an improvement in performance by fully

utilizing this computational platform. Further potential future work

lies in the utilization of GPUs as highly parallel computational

Figure 4. Rendering times in seconds versus data set size

for the different algorithms tested.

Table 1. Rendering times in seconds recorded for various stages of development. Red entries represent test cases where a linear

growth rate was not followed.

Data Points 1-Core 8-Core, Min Col 8-Core, Max Col 8-Core, Min Col, Binning 8-Core, Max Col, Binning

1.55E+06 (12 MB) 29.1 100.7 8.8 99.3 6.4

3.88E+06 (30 MB) 74.4 105 15.8 99.8 8

7.75E+06 (60 MB) 148.6 118.3 30.4 103.1 12

1.55E+07 (120 GB) 288.6 153.2 53.8 114.2 18.5

2.33E+07 (180 GB) 437.6 194.7 82 121.3 23.7

3.10E+07 (239 MB) 3086 242.7 106.9 132.7 28.2

1.55E+08 (1.2 GB) N/A 984.8 593.8 334.4 112.2

2.46E+08 (1.9 GB) N/A 1581.6 958.1 498.2 171.5

resource that can be used to enhance the performance of the

framework.

Conclusion

Visualization is a task that, like many, becomes increasingly

difficult when moving into large-scale datasets. This work has

demonstrated our methodology for transforming a typical web based

visualization library into a client-server model. By leveraging HPC

resources, we were able to parallelize the rendering process to

effectively handle large datasets. Our experiments have shown that

using only eight parallel cores, we were able to render a plot 20

times faster than the baseline implementation originally took. The

largest test case for this system, containing over 246 million data

points, successfully rendered in 171 seconds on eight cores. By

moving the visualization step to the server end, network transfer has

been reduced to the size of a typical image per refresh. Lastly, by

utilizing a state-of-the-art technology, Node.js, we were able

perform this task using an existing browser based visualization

library. Overall, this approach was able to preserve the interaction

paradigms provided by the original algorithms with the added

capability of being able to handle significantly larger datasets while

providing better rendering performance at the same time.

Acknowledgements

This research was supported by the DoD HPC Modernization

Program under award number GS04T09DBC0017. Views and

opinions of, and endorsements by the author(s) do not reflect those

of the US Army, Air Force, or the Department of Defense. The

authors would like to thank the collaborators at the Air Force

Research Laboratory at Wright Patterson Air Force Base. The

authors also wish to thank Wright State University and the CECS

department for their support and facilities.

References

[1] Ahrens, J., K. Brislawn, K. Martin, B. Geveci, C.c. Law, and M.

Papka. "Large-scale Data Visualization Using Parallel Data

Streaming." IEEE Computer Graphics and Applications IEEE

Comput. Grap. Appl. 21.4 (2001): 34-41. Web.

[2] Bostock, M.; Ogievetsky, V.; Heer, J., “D³ Data-Driven Documents”,

IEEE Transactions on Visualization and Computer Graphics, vol.17,

no.12, pp.2301,2309 (2011).

[3] Fisher, C. R., Walsh, M., Blaha, L. M., &Gunzelmann, G. (2015,

July). ACT-R and LBA model mimicry reveals similarity across

levels of analysis. 37th Annual Conference of the Cognitive Science

Society, Pasadena, California.

[4] Goecks, J, Coraor N, The Galaxy Team, Anton Nekrutenko, and

James Taylor. "NGS Analyses by Visualization with Trackster." Nat

Biotechnol Nature Biotechnology 30.11 (2012): 1036-039. Web.

[5] Hauser, H., F. Ledermann, and H. Doleisch. "Angular Brushing of

Extended Parallel Coordinates." IEEE Symposium on Information

Visualization, 2002. INFOVIS 2002. (2002): n. pag. Web.

[6] Inselberg, A., andDimsdale, B. “Parallel coordinates for visualizing

multi-dimensional geometry” Springer Japan, 25-44 (1987).

[7] Johansson, J., Cooper, M., andJern, M. “3-dimensional display for

clustered multi-relational parallel coordinates”. In Information

Visualisation, 2005. Proceedings. Ninth International Conference,

188-193 (2005).

[8] Parallel-Coordinates, “Parcoords,”

https://syntagmatic.github.io/parallel-coordinates/ (2014).

[9] Peng, W., Ward, M. O., &Rundensteiner, E. A. “Clutter reduction in

multi-dimensional data visualization using dimension reordering.” In

Information Visualization, 2004. INFOVIS 2004. IEEE, 89-96

(2004).

[10] Plotly, “Plotly.js,” https://plot.ly/ (2013).

[11] Pretorius, A. J., Mark-Anthony P. Bray, A. E. Carpenter, and R. A.

Ruddle. "Visualization of Parameter Space for Image Analysis."

IEEE Transactions on Visualization and Computer Graphics IEEE

Trans. Visual. Comput. Graphics 17.12 (2011): 2402-411. Web.

[12] Siirtola, H. “Direct manipulation of parallel coordinates”. In

Information Visualization, 2000. Proceedings.IEEE International

Conference, 373-378 (2000).

[13] Silva, C., Chiang, Y., Corrêa,W., El-sana, J., Lindstrom, P., “Out-of-

core Algorithms for Scientific Visualization and Computer Graphics.”

Visualization ’02 Course Notes.(2002).

[14] Ward, M. “XmdvTool: Integrating multiple methods for visualizing

multivariate data.” In Proceedings of the Conference on Visualization

’94, pp.326-333, IEEE Computer Society Press, 1994.

[15] Zhao, K., Liu, B., Tirpak, T. M., & Schaller, A. “Detecting patterns of

change using enhanced parallel coordinates visualization.” In Data

Mining, 2003. ICDM 2003. Third IEEE International Conference,

747-750 (2003).

[16] Zhou, Y., Wischgoll, T., Blaha, L. M., Smith, R., and Vickery, R. J..

"Visualizing Confusion Matrices for Multidimensional Signal

Detection Correlational Methods." Visualization and Data Analysis

2014 (2013): n. pag. Web.

Author Biography
Kurtis Glendenning received his BS in Computer Science from Wright State

University (2013) and is currently a MS student in Computer Science at

Wright State University. Kurtis has been involved in various research

projects in Wright State’s Computer Science department including topics

such as Visualization and Data Analysis.

Dr. Thomas Wischgoll received his PhD from the University of

Kaiserslautern in 2002. He was working as a post-doctoral researcher at

the University of California, Irvine until 2005 and is currently an associate

professor and the Director of Visualization Research at Wright State

University. His research interests include large-scale visualization, flow

and scientific visualization, as well as biomedical imaging. His research

work in the field scientific visualization and analysis resulted in over fifty

peer-reviewed publications.

Dr. Jack Harris is the Director of the MindModeling.org project and works

for the Warfighter Research Readiness Division, 711th Human

Performance Wing, Air Force Research Laboratory. He graduated from

Indiana University in 2011 with a joint Ph.D. in Computer Science and

Cognitive Science, specializing in automated methodologies for cognitive

model evaluation.

Dr. Rhonda Vickery is a visualization specialist with Engility Corporation.

She provides leadership on the DoD High Performance Computing

Modernization Program for the User Productivity Enhancement,

Technology Transfer and Training Program at the Air Force Research

Laboratory DoD Supercomputing Research Center in Dayton, OH. She has

over 20 years experience in the area of visualization and has over 12 years

experience working with DoD high performance computing environments.

Dr. Leslie Blaha is an Engineering Research Psychologist in the

Battlespace Visualization Branch, 711th Human Performance Wing, Air

Force Research Laboratory. She graduated from Indiana University in

2010 with a joint Ph.D. in psychology and cognitive science, specializing in

mathematical psychology.

