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Abstract 
 

Visualization is an important task in data analytics, as it allows 

researchers to view patterns within the data instead of reading 

through extensive raw data. Allowing the ability to interact with the 

visualizations is an essential aspect since it provide the ability to 

intuitively explore data to find meaning and patterns more 

efficiently. Interactivity, however, becomes progressively more 

difficult as the size of the dataset increases. This project begins by 

leveraging existing web-based data visualization technologies and 

extends their functionality through the use of parallel processing. 

This methodology utilizes state-of-the-art techniques, such as 

Node.js, to split the visualization rendering and user interactivity 

controls between a client-server infrastructure without having to 

rebuild the visualization technologies. The approach minimizes data 

transfer by performing the rendering step on the server while 

allowing for the use of HPC systems to render the visualizations 

more quickly. In order to improve the scaling of the system with 

larger datasets, parallel processing and visualization optimization 

techniques are used. This work will use parameter space data 

generated from mindmodeling.org to showcase our methodology for 

handling large-scale datasets while retaining interactivity and user 

friendliness. 
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Introduction 
    
The ability to do rapid visual assessments of parameter spaces has 

the potential to change the workflow for both model simulation and 

model fitting/parameter recovery. It enables the rapid identification 

of input parameters that result in similar output data or model 

behaviors. This allows researchers to eliminate redundant input 

parameters for more efficient use of modeling and simulation 

computational resources. For example, should two parameters 

exhibit a strong correlation, one might be held constant while the 

other varied in order to capture all the unique model behaviors. 

Further, early visual assessment of the parameter space means that 

ineffective or incorrect models may be rapidly identified and 

eliminated from study. This again results in effective use of both 

experimenter and computational time. Finally, parameter space 

visualizations can reveal unexpected relationships between the 

parameters and model behavior. If the behavior is incorrect, errors 

in model design or in model may be more easily found. If the 

behavior is novel, parameter space visualization will have resulted 

in new hypotheses or expanded research findings. 

     

Web-based visualizations are of interest in this application area as 

they can be directly integrated into the high-performance computing 

(HPC) environment. At the same time, they can make the 

implementation and use of parameter space visualization easy for 

any level of visualization programmer. The potential for interacting 

with the data and feeding any resulting visually-identified parameter 

constraints directly into the modeling and simulation process would 

further improve the modeling workflow. 

 

The approach described in this paper targets this area: web-based 

visualization directly integrated with the HPC job scheduling 

environment, optimized for a fast and interactive user experience. It 

is based on existing visualization tools, such as Data-Driven 

Documents (D3), combined with Node.js to devise a parallel 

implementation for maximal performance. Specifically, parallel 

coordinate plots worked well in the past for identifying correlations 

between variables so it was chosen as the first prototype 

visualization algorithm for this framework[16]. While standard 

tools, such as D3 and Plotly already provide common visualization 

algorithms, such as parallel coordinate plots, the amount of data 

these tools can handle is typically limited. In our experiments, 

datasets that exceed 500,000 data points can no longer be handled 

by these tools. Hence, an approach is needed that is capable of 

handling datasets beyond that limit. There are multiple bottlenecks 

that need to be overcome for this to be accomplished. Specifically, 

the amount of memory available on the system needs to be 

considered as well as the computational resource available. At the 

same time, transferring the dataset from the server to client can take 

a considerable amount of time. By utilizing a parallel server-side 

approach, all these bottlenecks can be avoided. The parallel 

approach only processes parts of the data at a time thereby reducing 

the memory footprint. Using the HPC resource directly provides 

more computational resources to the visualization algorithm. At the 

same time this approach avoids the transfer of the entire dataset and 

instead only requires a significantly smaller amount of data to be 

transferred from the server to the client. Overall, this enables the 

approach to process significantly larger datasets in a shorter period 

of time. 

 



 

 

Related Work 
 
Big data has been a booming topic for several years. Visualization 

is one key aspect of solving today’s big data challenges as it is 

necessary to understand and analyze data efficiently. Traditional 

visualization techniques do not necessarily suffice for big data. They 

are often not equipped to handle large sample sizes and generally do 

not account for data being too large to fit into main memory. The 

process of visualization needs to be revamped to accommodate the 

ongoing growth of data. 

 

Using web-based techniques for visualization tools can help target a 

broader audience. Bostock et al. proposed a JavaScript library, 

called Data-Driven Documents (D3), which serves as a flexible 

infrastructure for many types of visualizations[2]. Our system will 

provide tools built on the D3 library. 

 

 An upcoming visualization service, known as Plotly, provides 

a number of web based visualizations with many customization 

tools available. This system uses a client-server model to produce 

highly interactive visualizations for data [10]. While the 

generalization of various visualizations provided a flexible and 

efficient way to view data in multiple types of plots, the rendering 

process was not capable of handling large datasets. When testing a 

500,000 point dataset with Plotly, it failed to respond after several 

minutes of processing. The proposed methodology in this paper 

successfully rendered the largest test case that we were able to 

provide, consisting of 246 million points. 

 

Data can come in many different forms and sizes. High-dimensional 

data, being one variation, is a bit more difficult to visualize due to 

the inability to physically see more than three dimensions. Parallel 

coordinates[14] have proven to be a very sufficient visualization 

technique for this task. The basic idea is to present N dimensional 

data of the attribute space by mapping N equidistant parallel axes to 

the two-dimensional space. The axis of each dimension represents a 

property. The axis of the corresponding attribute values range from 

minimum to maximum uniform distribution. Thus, each data item 

can be used in accordance with its property values in a line segment 

on N parallel axes.  

 

When large datasets are visualized using parallel coordinates, it can 

cause confusion due to a large number of overlapping lines. For this 

Peng has presented the concept of clutter-based dimension 

reordering. This concept allows the algorithm to reduce the clutter 

of parallel coordinate plots without sacrificing information in the 

visualization[9]. Siirtola has introduced two browser based 

techniques for manipulating parallel coordinate plots[11]. The first 

technique uses polyline averaging to summarize a set of polylines. 

The second provides a visualization for correlation coefficients 

between polyline subsets in order to help the user discover new 

information. Zhao et al. proposed a technique of rearranging 

variables to better identify patterns of interest[15]. This work 

contained a query tool that enabled the user to describe a specific 

target pattern to be displayed. Johansson et al. introduced a method 

to simultaneously examine the relationship of a single dimension to 

many dimensions. To allow the user to quickly view different 

combinations of dimensions, the single dimension being used can 

interactively be swapped with another[7]. Hauser et al. have 

demonstrated and expanded on some of the intuitive features of 

parallel coordinate plots[5]. Some of the features presented in these 

works are used in the proposed system to showcase that our methods 

can accommodate more advanced visualizations. 

 

 One of the many difficulties of visualizing big data is that 

traditional visualization techniques require all of the data to be held 

in memory. Ahrens et al. have developed a methodology for 

handling datasets that are too large to fit into memory. They 

accomplish this by streaming data to the visualization, eliminating 

the size limitation and gaining some efficiency from running 

visualizations in a small memory space resulting in higher cache 

hits[1].  Streaming data is used in the work described in this paper 

alongside data chunking in order to compare efficiency. These two 

methods of breaking down data have resulted almost identical in 

speed. Out–of-core techniques use memory only as their secondary 

storage medium. All data is maintained on the hard drive and the 

main memory serves as cache for that data. As such these techniques 

allow the visualization algorithm to be able to process datasets that 

exceed the main memory[13]. 

 

 In some cases, big data visualizations are created by either 

rendering subsets of data or by mining features of data and rendering 

those results. Goecks et al. have developed Trackster, which is a tool 

that couples analysis and visualization to allow interactive 

visualizations for large datasets[4]. While this can efficiently 

produce a visualization, it does not actually render a large amount 

of data. In fields of study that are still in their early stages, such 

analysis tools for mining and subsetting may not exist, therefore 

making this technique ineffective. Instead these researchers are 

trying to view the entire parameter space in order to develop the 

generalizations of their data.  

 

 Pretorius et al. have created a system for exploring parameter 

spaces for image analysis. In this work, the paradigm of parameter 

sampling is changed in order to incorporate large parameter sweeps 

in a more efficient way[11]. The proposed system extends this 

methodology by doing parameter sweeps using multiple models and 

comparing their outputs through a parallel coordinates visualization. 

 

Zhou et al. developed several web-based visualization frameworks 

combined with pre-processing tools to provide a way for domain 

specialists to interpret their data[16]. The framework contained 

parallel coordinate plots and heat maps that could be used to present 

identification-confusion matrix data.  

 

Methodologies 
 
The software portion of this system was developed from an open 

source parallel coordinate plot library built on top of Data-Driven 

Documents (D3). The baseline implementation will be overviewed, 

followed by the details for the performance improvements including 

client-server modelling, parallel rendering and line binning. 

 

Baseline 
 

The baseline of this implementation uses Parcoords, an open source 

D3 library specifically designed for building parallel coordinate 

plots. Parcoords is a client-side JavaScript library that internally 

manages the creation of HTML tags, data manipulation, and 

rendering[8]. Many of the basic tools associated with parallel 

coordinate plots can be used with a simple flag on instantiation. 



 

 

Some of these features include reordering, removing, brushing, and 

statistical coloring of axes. Figure 1 illustrates these interaction 

features and their results on the visualization that are described in 

more detail below as well. Using any of these features will 

automatically refresh the visualization with the new parameters. 

 

 Reordering is a simple feature that allows the users to organize 

the axes to their liking. To do this, the user can click and drag an 

axis to a point in between two other axes. The plot will then be 

refreshed with the new arrangement. When two dimensions are not 

direct neighbors, it is sometimes hard to see their relationship. This 

feature provides a way to select which axes are adjacent to provide 

the most useful insight. Reordering axes can also help to better 

organize the plot for a cleaner visualization. 

 

 Some axes may prove to be of less importance to the user. 

Removing these will both minimize the clutter in the visualization 

and improve the refresh speed by reducing the amount of the data 

being rendered. Parcoords provides an API method for removing 

axes, which is connected to a list of existing axes. The user can 

toggle each of the axes individually to remove or reintroduce them. 

 

 Brushing is a very powerful tool for parallel coordinate plots. 

It allows the user to select a portion of an axis, or multiple axes. This 

will then translate to upper and lower bounds based on the scale of 

the axis being brushed. These bounds are used to limit the number 

of data points being rendered to the plot. By using this tool, a user 

can select a range of values on one axis to more clearly see where 

they fall on the other axes. While rendering with active brushes, the 

system will skip any data point with a value outside of these bounds, 

drastically reducing both the clutter of the plot and the rendering 

time. 

 

 Lastly, another powerful tool is statistical coloring. This feature 

provides a color scheme for the lines representing each tuple in the 

dataset. The color scheme is based on a single axis specified by the 

user via clicking the name label at the top. Then by mapping the 

value of a tuple for the specified axis to a color range, the color of 

each line will reflect the tuple’s position on that axis. As mentioned 

before, it is hard to see the relationship of two dimensions when they 

are not directly neighboring. Statistical coloring provides a way to 

compare one specified axis with all other dimensions in the plot. 

 

 Altogether Parcoords provides an easy to use JavaScript API 

for creating parallel coordinate plots with some commonly used 

features. The infrastructure of using this library out of the box is 

sufficient for very small datasets, but presents several major 

problems when moving into larger datasets. Since this is a client-

side JavaScript library, the users will need to download the data they 

wish to plot from a database server. This becomes unreasonable 

even when talking about data as small as one hundred megabytes, 

while most times large-scale datasets start at gigabytes or terabytes. 

Even if the user manages to wait for such a large dataset to 

download, most client machines are not equipped to handle data 

manipulation and rendering at this scale. The following sections will 

discuss the new infrastructure model and performance 

improvements used to allow the system to handle larger datasets. 

 

 

  

  

Figure 1. Photos of the resulting visual after making changes to the original plot, which is represented in the top left. The top 

right has reordered IV_IV1 and IV_IV2. Bottom left has brushed a section of DV_sum. Bottom right has changed the statistical 

coloring to interpolate IV_IV1. 



 

 

Client-Server Model 
 

The first problem addressed is the overwhelming data transfer. To 

reduce the network load this system moves the rendering step to the 

server where the data is stored. By utilizing a state-of-the-art engine 

like Node.js, the same JavaScript files used on the front-end can be 

run on the back-end. Another benefit of using Node.js is that it 

provides a module, jsdom, which simulates a web browser 

environment. With these technologies the implementation of the 

rendering methods does not need to be altered because it thinks that 

it is rendering to an ordinary webpage. 

 

 In order to retain the controls on the user interface of the 

webpage, some modifications were made to the visualization 

library. Parcoords is built for the client-side to manage both the 

HTML tags and image rendering. In order to separate the controls 

from the data management and visualization refresh, this library was 

split into two files, one for the server and one for the client. 

Parameters are generated from user input of reordering, removing, 

brushing, or statistically coloring axes and are given to the server as 

input in order to generate the refreshed image. 

 

 Parcoords generates two components in the rendering step. 

These are the visualization and the dimension axes. The 

visualization is rendered to an HTML canvas, which temporarily 

stores the image in memory. The axes are scalable vector graphic 

(svg) elements, which is required for enabling the control features. 

The svg tags can directly translate to a string to be sent to the client, 

but the canvas must be converted to a static image format. Another 

Node.js module, canvas, is used to convert the temporary canvas 

image into a string format. These two strings then become the output 

that the server sends to the client. The client script can reconstruct 

the visualization on the webpage by simply pasting the DOM string 

into a designated div element and drawing the image string to an 

underlying canvas. Initially, the visualization library generates an 

image and then waits for input to refresh. Since the redesigned 

workflow only generates one image per run, the server script will 

terminate immediately after the first render and return the output 

results to the client. 

 

Parallel Rendering 
 

In most visualizations, rendering one part of the image is 

independent of rendering another part. In the case of parallel 

coordinate plots, each line and even each individual line segment 

can be considered independent of one another. By exploiting this 

 

 

 

Figure 2. Demonstration of how the database chunking is performed to allow parallel rendering. By dividing by columns, the 

processes do not overlap in the visualization space, making the merge simple and efficient. 

 



 

 

fact one can distribute the work among parallel rendering processes 

for dramatically faster rendering speeds. 

 

 Node.js is run on a single core, so threading will not produce 

parallel processing. Instead a node-module, child process, was used 

to fork new Node.js instances on a separate processing core. This 

required some modification of the server workflow. First the server 

rendering script was reinstated as the child process, while a master 

script was developed to fork sub processes and manage the 

distribution of work. Inter-process communication can create 

substantial overhead if a large amount of data is transferred. In order 

to keep this at a minimum, each process queries for its own data 

instead of the master process distributing the data to the children. 

 

 As it was stated before, each line rendered is independent of 

another allowing work distribution to be flexible. Two general 

approaches to distributing work would be to group by number of 

rows or number of columns. To divide by number of rows, the 

master script would have to render a full sized image in each process 

since the position on the axes where the lines will fall cannot be 

predetermined. If divided by columns, the length of the image 

rendered in each process can be shortened, creating a smaller 

amount of overhead for communicating results. For this reason, 

distributing by columns is primary, although distributing by rows 

can still occur if necessary. This would occur in a case where 

number of rows is large but number of columns is small. Figure 2 

shows a graphical representation of how the task gets subdivided 

among the processes. Hence, dividing the image to be created allows 

the master script to divide the rendering task between the cores in a 

relative straight forward fashion. Sub processes are forked to create 

a new rendering task to generate the sub-image between two axes of 

the parallel coordinate plot. Only in cases where this would create 

an imbalance on the load of the involved processes, which typically 

only occurs toward the end of the rendering step with larger number 

of columns, the rendering task may get broken up by rows to ensure 

an even distribution of the load. 

 

 In the master script, a global parameter is set to specify the 

number of processing cores to use. Using this value a controller 

manages when to start new processes and handle output. 

Experiments were conducted to identify optimal strategies for load 

balancing. The growth rate of data points to render time is linear, 

inferring that many small workloads will not yield better results than 

fewer large processes. Creating more processes than the number of 

allocated processing cores will be slower since some processes will 

have to wait for an open core to run on. To further improve the 

efficiency, the controller evenly spreads the work between the 

processing cores so that none are substantially slower than the rest. 

Basically, there are different approaches of balancing the load 

among the processors. On the one hand, one could create one 

process per processor and task that process with generating as many 

subsections of the image as necessary. On the other hand, one 

process could be generated for each subsection of the image. In 

either case, the master script needs to monitor the processors 

involved to either create a new process or task an existing process 

with a new subsection. Due to the fact that typically the number of 

axes is significantly larger than the number of available processors 

in our test scenario, balancing the load this way works very 

effectively and only toward the end of rendering the image the 

rendering tasks have to be broken up by row. Both parallelization 

approaches mentioned above were implemented and tested. As can 

be seen from the results it turns out that creating less number of 

individual process improves the rendering speed considerably as it 

avoids the overhead of creating and removing a larger number of 

processes. 

 

 To further improve the overall performance of the approach, 

different access schemes were implemented to fully support larger 

datasets. When there are many columns and many rows, it may 

occur that one process does not have enough memory to fit an entire 

column of data. In this case the system will stream data from the 

database, handling one data point at a time. This reduces the amount 

of memory that a process needs to store and negates the idle time in 

transferring data from the database to the process as a data structure. 

In practice this methodology has proved to be almost equivalent in 

speed and scale as taking the whole dataset as a chunk, but it allows 

for dataset sizes to be larger than the process memory.  

 

 A side effect of taking the streaming route is that the scaling 

for the axes must be done outside of the Parcoords library since it 

will not have all of the data available at once. Scaling for each axis 

is performed by mapping the range between the max and min values 

to the height of the image being produced. For most cases this is a 

fast query, but in testing with an SQL database (in this case MySQL 

version 14.14, distribution 5.6.12) it was found that unindexed 

columns in a database are extremely slow at finding max and min. 

To account for datasets that have this many dimensions, the max and 

min are saved on the client side so that this lookup only occurs once 

as a preprocessing step before the first render. 

 

Line Binning 
 

Constructing visualizations is a very slow process for a computer 

when comparing to simple math on a processor. Often times 

improving rendering speed consists of identifying criteria to find 

shortcuts around drawing every component. In the case of parallel 

coordinate plots, one can recognize that there are a limited number 

of lines between any two given axes for a given image resolution. 

 

 

 

 

 

 

 

Figure 3. Precision of rendering can at best draw a line from 

a pixel in axis A to a pixel in axis B. Although the actual point 

values in the red and green line are slightly different, they 

will be drawn in the exact same place in the visualization.  

 



 

 

This provides a way to reduce the number of lines drawn by 

avoiding rendering the same line twice. 

 

 Parallel coordinate plots have a static height value which 

translates into a number of pixels on the screen. Each line segment 

in this visualization is drawn from one axis to the next or from a 

pixel in axis A to a pixel in axis B as shown in Figure 3.When 

scaling a value to the axis in the visualization, it often occurs that 

two or more lines will fall in the same location, i.e. connect the exact 

same pixels on the respective axes. As a result, the user is not able 

to distinguish one from the other. Thus we can infer that the 

maximum number of unique lines that can exist is equal to the 

product of the height of two axes, measured in pixels. Our system 

draws a height of four hundred pixels making the maximum number 

of unique lines 400 by 400, or 160,000. This of course is only the 

worst case scenario. On average the algorithm would have to draw 

much fewer lines depending on the variety of the data. 

 

In order to identify the fact that there is multiplicity for a given line, 

the algorithm sets up a table based on the height values on each of 

the two involved axes. In this specific implementation the height 

values can range from 0 to 400 so that the overall number of possible 

combinations is 160,000.  A hash-function is used to translate the 

height values of the two end points of a line to the index within this 

table to identify whether this line was encountered before or not. 

Since this test is merely based on the end points of the line, it is fairly 

efficient, especially when compared to the rendering process for the 

entire line using, for example, the Bresenham algorithm. Due to the 

fact that additional lines can effectively be skipped entirely by this 

simple look-up, the computational savings can be quite significant.  

 

When using statistical coloring, it does not suffice to draw the first 

line and skip the rest. In order to retain an accurate color scheme, 

the system must accumulate the average color value of each existing 

line. The hexadecimal color value of each line can be converted into 

an integer and used to efficiently calculate an average. Once finished 

iterating through the data, each existing line is drawn once using the 

averaged color value. This improvement has a very strong effect on 

large datasets as it changes the growth rate to match that of integer 

addition instead of canvas rendering. Whether the dataset contains 

200k, 1,000k or even 1,000,000k points, the maximum number of 

lines drawn will be 160k. It is important to note that the lines that 

are skipped are lines that would only be drawn multiple times with 

the exact same start and end point, i.e. the exact same line. By 

accumulating the color values of all these identical lines, the final 

image is in no way different from the one that would have been 

obtained by drawing all lines individually; it only saves on 

computational time. 

Interactive Components 
When visualizing data with parallel coordinate plots, the 

interactive features that allow one to analyze the data further by 

specific interactive features, such as eliminating columns, brushing 

along one axis to select sub-sections of the data, or applying color 

coding. These features are key to the ability to successfully 

investigate the dataset at hand. It is important to note that this 

parallel rendering approach retains those abilities. Axes of the 

parallel coordinate plots are listed in a separate section right below 

the visualization where the user can enable and disable them 

specifically. 

 

The rendering of the user interface elements is decoupled from the 

rendering of the actual parallel coordinate plots. The user interface 

elements are drawn using svg elements, whereas the visualization is 

added as an image. This decoupling allows the web interface to 

retain the interactive features. Hence, the user can still apply color 

coding or brush along an axis in exactly the same way as one would 

with the original, sequential implementation of the parallel 

coordinates plot. As such the user still has the capabilities one would 

expect for filtering to reduce the clutter that can occur in a parallel 

coordinate plot. 

 

Results 
 
The implementation outlined resulted in a fully functional web 

based visualization tool, connected to mindmodeling.org. Users can 

initiate this visualization tool by visiting the results section of the 

desired job and simply clicking the Refresh button. Immediately 

after opening the results tab, some options are available to the user 

in order to make specifications for the first rendering. These options 

include selecting active columns and a number of data points to 

display. After the first visual is created, other interactive options will 

be available on the parallel coordinate plot such as brushing and 

statistical coloring. To allow the user to make several modifications 

before updating the image, no refresh request will be sent until the 

user clicks the Refresh button again. Based on our experimental test 

runs, a render time estimator is shown below the plot that updates 

are every interaction with the controls. 

The algorithms were tested on an Apple MacBook Pro with Intel 

Core i5 and 4GB of memory for the client. The server consists of 16 

Intel Xeon processors running at 2.27 GHz with 32 GB of RAM. 

For the experiments, only 8 CPUs were used at a time to not 

completely block the server from performing any other tasks. The 

algorithm was tested with 8 different data sizes. Each test run was 

performed five times. The running time for each test run was mostly 

identical for each dataset size with almost non-existing variance. 

 

The test data for this system resulted from large scale modeling and 

simulation of two computational cognitive models (Adaptive 

Control of Thought-Rational and the Linear Ballistic Accumulator). 

The goal of the study was thorough model comparison, so the 

simulations entailed wide sampling of the parameter spaces. This 

sample of data consisted of 246 million points on 155 dimensions, 

totaling 1.9 gigabytes of data. More details about the simulations 

can be found in Fisher et al.[3]. A number of dataset sizes were 

tested at each stage of development and recorded for discussion. 

While the number of data points is listed, it is important to note that 

there were 155 dimensions in the tested dataset. A high dimensional 

dataset is handled differently than a low dimensional one, although 

for this system the rendering speeds are relatively similar. The first 

stage recorded was using the standard visualization tools on the 

server side. Initially this only uses one core, so the results should be 

comparable to running on the client side without the network data 

transfer. After parallelizing the rendering process, two scenarios 

were considered. Minimizing the data distribution size and creating 

many processes versus maximizing the distribution size and creating 

few processes. The results of both are shown in Table 1, represented 

by min col and max col respectively. Lastly, line binning has been 

added to each of these to further compare rendering speeds. 

 

The single core rendering speed has a very large growth rate and 

eventually breaks due to lack of memory. The baseline visualization 



 

 

tool (1-core in Table 1) can render 23 million points in roughly 437 

seconds. The performance numbers for these single core runs are 

effectively identical to the rendering times that can be expected from 

the original parcords implementation as it is using the exact same 

code. These numbers were used as the baseline instead of the ones 

obtained via running parcoords on the client to ensure the same type 

of computing environment is used. When using parallelization, the 

system becomes capable of rendering any size of data and can render 

small data sizes quickly. The downside is that the growth rate of 

speed is still quite large. This stage (8-core, Max Col Column in 

Table 1) can render the same 23 million point dataset in 82 seconds, 

an improvement of 4 times. 8-core, Min Col represents 

parallelization using many processes of minimal size. It is obvious 

that the overhead from creating more processes harshly affects the 

rendering speed since rendering 23 million points takes over 120 

seconds as opposed to 82 using 8-core, Max Col. Line binning 

slightly reduces the small dataset speeds, but greatly reduces the 

growth rate. This result backs the methodology discussed and is 

capable of rendering 23 million data points in only 23.7 seconds 

when combined with maximizing data distribution, an improvement 

of 20 times over the baseline system. The largest dataset tested on 

the system contained 246 million points and successfully rendered 

in 171 seconds. Figure 4 shows least-square-fitted lines for a plot of 

the numbers shown in table 1. This graph shows nicely how much 

faster the parallel rendering performs as the dataset size grows. It 

should be noted that the performance of the Max Col approach 

performs too similarly no matter whether the data base is accessed 

using the streaming method or not for the dataset sizes tested so far 

to be distinguishable in the plot. This is why only one of the lines is 

visible in the graph. 

 

 The improvement in performance of the visualization 

algorithm makes it easier to use for our collaborative partners thanks 

to the increased interactive capabilities and ability to process the 

larger datasets that were impossible to visualize using existing 

approaches. By using the current implementation of the described 

algorithm, our collaborators were already able to identify 

characteristics within the data which they were not able to do before. 

Due to the fact that it is directly integrated with the web interface 

that the users of the mindmodelling.org system use to track the 

progress of their computations, the visualization is ready to use 

within that same interface. As a result it is very easy to use and ready 

to deploy by a relatively large user base. 

 

 While this system is demonstrated with parallel coordinate 

plots for parameter space data, the general concept can also be 

applicable to other types of visualizations. The distribution of work 

in the parallelization process will generally be specific to the type of 

visualization but the infrastructure can be applied very broadly. 

 

Future Work 
 
In the future we will extend our framework to include additional 

visualization algorithms thereby expanding the capabilities as well 

as providing further functionality to our user base. Moreover, the 

framework will be scaled up so that it is able to take advantage of 

more computational resources. We have an in-house high-

performance cluster available to this project that consists of 2048 

parallel cores. We expect an improvement in performance by fully 

utilizing this computational platform. Further potential future work 

lies in the utilization of GPUs as highly parallel computational 

 

Figure 4. Rendering times in seconds versus data set size 

for the different algorithms tested. 

Table 1. Rendering times in seconds recorded for various stages of development. Red entries represent test cases where a linear 

growth rate was not followed. 

Data Points 1-Core 8-Core, Min Col 8-Core, Max Col 8-Core, Min Col, Binning 8-Core, Max Col, Binning 

1.55E+06 (12 MB) 29.1 100.7 8.8 99.3 6.4 

3.88E+06 (30 MB) 74.4 105 15.8 99.8 8 

7.75E+06 (60 MB) 148.6 118.3 30.4 103.1 12 

1.55E+07 (120 GB) 288.6 153.2 53.8 114.2 18.5 

2.33E+07 (180 GB) 437.6 194.7 82 121.3 23.7 

3.10E+07 (239 MB) 3086 242.7 106.9 132.7 28.2 

1.55E+08 (1.2 GB) N/A 984.8 593.8 334.4 112.2 

2.46E+08 (1.9 GB) N/A 1581.6 958.1 498.2 171.5 

 

 



 

 

resource that can be used to enhance the performance of the 

framework. 

 

Conclusion 
 
Visualization is a task that, like many, becomes increasingly 

difficult when moving into large-scale datasets. This work has 

demonstrated our methodology for transforming a typical web based 

visualization library into a client-server model. By leveraging HPC 

resources, we were able to parallelize the rendering process to 

effectively handle large datasets. Our experiments have shown that 

using only eight parallel cores, we were able to render a plot 20 

times faster than the baseline implementation originally took. The 

largest test case for this system, containing over 246 million data 

points, successfully rendered in 171 seconds on eight cores. By 

moving the visualization step to the server end, network transfer has 

been reduced to the size of a typical image per refresh. Lastly, by 

utilizing a state-of-the-art technology, Node.js, we were able 

perform this task using an existing browser based visualization 

library. Overall, this approach was able to preserve the interaction 

paradigms provided by the original algorithms with the added 

capability of being able to handle significantly larger datasets while 

providing better rendering performance at the same time. 
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