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ABSTRACT 

Studies in human and non-human primates have confirmed the compensatory 

enlargement or positive remodeling (Glagov phenomenon) of coronary vessels in the 

presence of focal stenosis.  To our knowledge, this is the first study to document arterial 

enlargement in a metabolic syndrome animal model with diffuse coronary artery disease 

(DCAD) in the absence of severe focal stenosis.  Two different groups of Ossabaw 

miniature pigs were fed a high fat atherogenic diet for 4 months (Group I) and 12 months 

(Group II), respectively.  Group I (6 pigs) underwent contrast enhanced computed 

tomographic angiography (CCTA) and intravascular ultrasound (IVUS) at baseline and 

after 4 months of high fat diet, whereas Group II (7 pigs) underwent only IVUS at 12 

months of high fat diet.  IVUS measurements of the left anterior descending (LAD), left 

circumflex (LCX) and right coronary (RCA) arteries in Group I showed an average 

increase in their lumen cross-sectional areas (CSA) of 25.8%, 11.4%, and 43.4%, 

respectively, as compared to baseline.  The lumen CSA values of LAD in Group II were 

found to be between the baseline and 4 months values in Group I.  IVUS and CCTA 

measurements showed a similar trend and positive correlation.  Fractional flow reserve 

(FFR) was 0.91±0.07 at baseline and 0.93±0.05 at 4 months with only 2.2%, 1.6% and 

1% stenosis in the LAD, LCX and RCA, respectively.  The relation between percent 

stenosis and lumen CSA shows a classical Glagov phenomenon in this animal model of 

DCAD.   
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INTRODUCTION 

Post-mortem and in vivo studies suggest that coronary artery diameter increases as a 

consequence of atherosclerosis [1-7].  This phenomenon, also known as the Glagov 

phenomenon, is characterized by an outward enlargement of the vessel wall (positive 

remodeling) without compromise of the lumen area during the early stages of 

atherosclerosis [2].  It has also been reported [2] that the capacity for compensatory 

positive remodeling ceases when the plaque occupies approximately 40% of the potential 

lumen area.  The phenomenon was described in a histological autopsy study twenty five 

years ago [2] and has since been demonstrated in vivo in humans using intravascular 

ultrasound (IVUS) [1,3,5,7,8], epicardial echocardiogram [4], and contrast enhanced 

computed tomographic angiography (CCTA) [6]. 

 It is generally accepted that coronary atherosclerosis is a geometrically focal and 

eccentric disease [9], and that coronary lesions evolve in an independent manner [10].  

Hemodynamic forces regulate vascular structure, as well as influence the development of 

atherosclerosis and other pathologies [11-13].  Several studies [11-14] on wall shear 

stress (WSS) have provided new insights into the contribution of the endothelium to the 

development of coronary artery disease and vascular remodeling. 

 The purpose of this atherosclerosis progression study was to assess the presence 

of coronary arterial enlargement during the early stages of the disease in a metabolic 

syndrome Ossabaw swine model known to develop both diffuse and focal coronary artery 

disease [15].   
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METHODS 

Animal Model and Study Design 

All animal experiments were performed in accordance with national and local ethical 

guidelines, including the Principles of Laboratory Animal Care, the Guide for the Care 

and Use of Laboratory Animals [16] and the National Association for Biomedical 

Research [17], and an approved Indiana University Purdue University Indianapolis 

IACUC protocol regarding the use of animals in research. 

 Thirteen 9-month-old Ossabaw miniature pigs of either sex were divided into 2 

groups.  The Ossabaw body weight at baseline was 41.7±1.9 kg, 74.2±4.3 kg at 4 months, 

and 116.8±8.6 kg after 12 months of high fat atherogenic diet [18].  The diet was 

composed of 6% to 8% kcal from proteins, 19% kcal from complex carbohydrates, and 

46% to 75% kcal from hydrogenated soy bean oil (predominantly trans fatty acids), and 

2% cholesterol and 0.7% cholate by weight [18].  Six Ossabaw pigs (Group I) were fed 

3,200 kcal daily for 4 months, and seven Ossabaw pigs (Group II) were fed the same diet 

for 12 months, until they were euthanized.  Five 4-month-old body weight-matched 

Yorkshire domestic pigs (Group III), of either sex, that were fed with a lean diet for 4 

months were used as the control group because Ossabaw miniature pigs do not grow 

when fed a lean diet [19].  The pigs were housed and fed in individual pens and had ad 

libitum access to water.  A room temperature of 68-72°F and humidity of 30% to 70% 

were maintained. 

 At a scheduled time, the pigs were fasted overnight.  Surgical anesthesia was 

induced with TKX (Telazol 10 mg/kg, Ketamine 5 mg/kg, Xylazine 5 mg/kg) and 

maintained with Isoflurane 2-4%.  Ventilation with 100% O2 was provided with a 
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respirator and maintained PCO2 at approximately 35 mmHg.  Electrocardiographic 

(ECG) leads were attached to the swine limbs.  Body temperature was kept at 37.5°C-

38°C and pH at 7.4±0.1. 

Imaging Procedures 

 Contrast Enhanced Computed Tomographic Angiography (CCTA) 

CCTA is a clinically used modality that allows the identification of coronary lesions with 

excellent accuracy.  CCTA scans were obtained by a cardiovascular Radiologist at 

baseline and at 4 months (Group I) on a 64 detector computed tomography system 

(Philips Brilliance 64, Cleveland, OH).  Images were acquired with a slice thickness of 

0.625 mm and a reconstruction interval of 0.3 mm.  The rotation time was 0.4 sec with a 

pitch of 0.2, 120 kVp, and 1,050 mAs.  A XCB filter was used for reconstructions.  The 

images were reconstructed at 5%, 15%, 25% … 75%, 85% and 95% of the R-R interval.  

The scan was performed during end-inspiratory breath-hold using retrospective ECG-

gating.  Intravenous Lidocaine hydrochloride (60 μg/kg/min) and Metoprolol (5 mg every 

minute up to a maximum dose of 25 mg) were administered to maintain the heart rate 

below 60 beats per minute. An intravenous injection of nitroglycerin (1.5 mg) was slowly 

administered to cause coronary vasodilation.  Coronary arterial image acquisition was 

performed using 60–80 mL (3.5 to 5 mL/sec) of intravenous contrast material (Isovue-

370) followed by 100 mL of normal saline flush. 

 CCTA Imaging Analysis 

Image segmentation of CT data was used to extract the main trunks of the LAD, LCX 

and RCA by a previously validated algorithm developed by our group [20].  The 

segmentation data contained the central line coordinate and diameter.  Since some of the 
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image segmentation required manual operation on the more complex structures, pre-

processing and post-processing were introduced to reduce the manual load and to 

improve the accuracy.  These processes included simple segmentation of surrounding 

regions and 3-D edit of visualized objects.  The segmented vessels were binarized and 

then processed by isosurface rendering.  Once the 3-D visualization functions were 

completed in Matlab, the vessel surface was represented by triangle mesh and saved as 

STL files.  MeshLab [21] was used to view the 3-D coronary tree and refine the structure.  

The list of faces and vertices in the STL file was then converted into typical patch 

structures to provide the spatial connectedness in terms of faces and vertices, where faces 

were the index of three vertices in one triangle, and vertices were the X, Y, Z coordinate 

of each vertex. 

The lumen cross-sectional area (CSA) was determined by computation of the 

intersection of a plane with the vessel surface.  The surface was defined by a set of 

vertices connected by faces forming the surface.  The intersection plane was defined by a 

point and a normal vector.  The point lied on the central line and the normal vector 

pointed to the direction of a pair of continuous points along the central line.  The lumen 

CSA was obtained by calculating intersection segments of triangle patches of the vessel 

surface with the plane.  All calculated segments were linked to each other to form a 

continuous intersection region.  The lumen CSA measurements included in the analysis 

were taken every 5 mm along the length of the coronary vessels, starting at the ostium, 

once the entire vessel was reconstructed.  Anatomical landmarks such as vessel branches 

were used to overlap the position of each section to the position determined by IVUS. 

 Intravascular Ultrasound (IVUS) 
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IVUS is a catheter-based technique that provides tomographic images perpendicular to 

the length of the coronary arteries.  It provides important information regarding plaque 

composition and distribution.  IVUS also provides vessel and lumen diameters that are 

fundamental in the evaluation of a coronary lesion.  Coronary angiography and IVUS 

imaging were performed by a trained physician following standard procedures of clinical 

practice at baseline and at 4 months (Group I), and at 12 months (Group II).  The femoral 

artery was cannulated with a 7 Fr introducer sheath and after full anticoagulation with 

Heparin (100 IU/kg), a 6 Fr guiding catheter (Mach 1, HS SH, Boston Scientific, MA) 

was advanced over a 0.035” guide wire into the selected coronary artery (LAD, LCX and 

RCA).  The animals received 200 g of intracoronary nitroglycerin before advancing the 

IVUS catheter.  A 3.6 Fr, 40-MHz coronary imaging catheter (Atlantis SR Pro, Boston 

Scientific, MA) was advanced over a 0.014” guide wire and positioned in the lumen of 

the distal portion of the artery where the vessel had a diameter of approximately 1.5 mm.  

An automatic and continuous pullback (0.5 mm/sec) was performed from the distal 

position to the proximal portion, allowing visualization of the entire length of the 

coronary artery.  IVUS images were recorded on S-VHS videotape, digitized and 

analyzed off-line using NIS-Elements AR 3.2 software (Nikon, Japan). 

 IVUS Imaging Analysis 

Still pictures from the digitized images were taken every 5 mm along the length of the 

coronary arteries starting at the ostium.  The position along the vessel was normalized 

with respect to the total length, and the results were expressed in terms of the fractional 

longitudinal position, ranging from 0 (most proximal, at inlet of coronary artery) to 1 

(vessel diameter of about 1.5 mm).  The same normalization process was applied to the 
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CCTA images to make sure that the same vessel length was used for the analysis of both 

IVUS and CCTA images.  IVUS landmarks such as side branches were used in matching 

the sites of the baseline and 4 months images, and to overlap the sections measured with 

IVUS to the sections measured with CCTA.  Frames during the diastolic phase of the 

cardiac cycle were used for measurements.  Using the NIS-Elements software a 

calibration was performed by measuring 1-mm grid marks encoded in the IVUS image.  

Manual planimetry was used to trace the leading edges of the luminal border.  The lumen 

CSA and the diameter of each segment were calculated. 

 Hemodynamic Studies 

Immediately after IVUS imaging, a 0.014” pressure/flow (combo) guide wire (Volcano 

Corporation, Rancho Cordova, CA) was calibrated and introduced into the guiding 

catheter.  The wire was advanced up to the tip of the guiding catheter, where the pressure 

measured through the guiding catheter was verified to be equal to the pressure measured 

by the combo wire.  The combo wire was then advanced into the coronary artery and 

intracoronary adenosine (120 g) was administered to achieve steady-state hyperemia.  

Fractional Flow Reserve (FFR) was measured during maximal hyperemia.  Recordings 

were taken at the distal, middle and proximal portions of the coronary arteries.  A FFR 

value of ≤0.80 was considered flow limiting. 

Statistical Analysis 

The data were expressed as means±1SD.  Statistical significance of the results was 

assessed using SigmaStat software (Systat Software, Point Richmond, CA).  The 

differences were evaluated with student’s t-test or two-way ANOVA, where appropriate.  
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The Siegel-Tukey test (non-parametric test) was also used to confirm the statistical 

analysis.  p<0.05 was considered statistically significant. 

 

RESULTS 

The lumen CSA data in Group I correspond to measurements performed at the beginning 

of the study (before the atherogenic diet was initiated, i.e., baseline) and after 4 months of 

atherogenic diet in the same animals for LAD, LCX and RCA.  When the baseline IVUS 

measurements were compared to the 4 months measurements there was an average (over 

the length of the vessel; LAD 70±3.73 mm, LCX 51.3±3.21 mm, and RCA 86.3±4.63 

mm) increase in lumen area from 5.8±2.2 mm
2
 to 7.2±2.3 mm

2
 (p=0.006) in the LAD 

(Figure 1A), from 4.1±1.0 mm
2
 to 4.5±1.0 mm

2
 (p=0.21) in the LCX (Figure 1B), and 

from 5.5±0.7 mm
2
 to 7.9±1.1 mm

2
 (p=4.05E-09) in the RCA (Figure 1C). 

 The lumen area of the LAD artery at baseline and at 4 months (Group I) was 

compared to the lumen area of the LAD from the animals on atherogenic diet for 12 

months (Group II).  The CSA values at 12 months were 11.8% smaller when compared to 

the 4 months lumen area (6.3±1.5 mm
2
 vs. 7.2±2.3 mm

2
, p=0.22, Figure 1A) probably 

due to the higher percent stenosis (0 to 61.3%) at 12 months. 

The lumen area of the LAD and RCA arteries (the two main coronaries that 

showed the most significant positive remodeling) from Group I at 4 months was 

compared to the lumen area of Group III.  The CSA values of the LAD from fractional 

longitudinal position 0 to 0.5 were very similar in both groups (p=0.5), whereas the 

values from fractional longitudinal position 0.6 to 1 were significantly larger in Group I 

(p=0.001), Figure 2A.  The same was found in the RCA (p=0.5 and p=0.03, respectively), 
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Figure 2B.  Our study shows significant positive remodeling in the distal portions of the 

coronary arteries as compared to the most proximal portions in the main trunks. 

 Figures 3A and 3B show the CCTA reconstructed LAD and LCX trunks in one 

representative animal from Group I at baseline (Figure 3A) and at 4 months (Figure 3B).  

Based on these CCTA images, the lumen CSA was determined for Group I, as 

summarized in Figures 3C and 3D.  The CCTA lumen CSA increased from 5.2±0.5 mm
2
 

to 7.7±1.0 mm
2
 (p=1.39E-05) in the LAD (Figure 3C), and from 4.4±0.6 mm

2
 to 5.2±0.3 

mm
2
 (p=0.09) in the LCX (Figure 3D). 

 A comparison of lumen CSA measurements obtained from IVUS and CCTA 

showed similar results and trends for both methods [p=0.15 at baseline (Figure 4A) and 

p=0.11 at 4 months (Figure 4B) for LAD, and p=0.34 at baseline (Figure 4C) and p=0.06 

at 4 months (Figure 4D) for LCX].  Hence, CCTA confirmed the IVUS findings of 

arterial enlargement.  Figure 5 shows the linear regression (Figure 5A) and Bland-Altman 

(Figure 5B) accuracy analysis for the IVUS lumen area vs. the CCTA lumen area.  The 

mean difference between IVUS and CCTA was 0.06 ± 1.49 mm
2
 (accuracy p=NS). 

The average percent stenosis determined by IVUS in Group I at 4 months was 

2.2% ± 0.8% (0 to 3.32%) over the length of the LAD, 1.6% ± 0.9% (0 to 3.51%) for 

LCX, and 1% ± 0.8% (0 to 1.94%) for RCA, as shown in Figure 6A.  The values were 

not statistically different in the three arteries.  The percent stenosis in Group II at 12 

months in the LAD was 21.3% ± 14.2%, ranging from 0% to 61.3% (Figure 6B).  The 

results from Groups I and II were significantly different, p=0.03.  FFR values in Group I 

were within normal ranges at baseline (0.91±0.07) and at 4 months (0.93±0.05), p=0.71, 

Figure 6C. 
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To demonstrate the positive remodeling, we plotted the lumen area versus the 

percent stenosis at 12 months (Figure 7).  There was no significant relation between 

lumen CSA and percent stenosis below and above 35% stenosis (r values were 0.09 and 

0.12, respectively), which confirms positive arterial remodeling. 

 

DISCUSSION 

The major finding of this study was that Ossabaw pigs fed a high fat atherogenic diet 

developed diffuse coronary artery disease (DCAD) over time, and arterial positive 

remodeling (paradoxical increase in lumen area) during the early stages of the disease.  

Furthermore, after 12 months on atherogenic diet, a decrease in lumen CSA was 

observed, but it was still greater than that observed at baseline (Figure 1A).  Several 

studies [1-8] have shown arterial positive remodeling in the presence of focal disease but 

to our knowledge, this is the first report of a compensatory enlargement of the coronary 

arteries in a metabolic syndrome animal model with DCAD during the early stages of the 

disease. 

 The Ossabaw swine develop metabolic syndrome when fed an excess calorie 

atherogenic diet over several months [19].  All the pathological aspects of the animals’ 

metabolic syndrome (hypertension, dyslipidemia, glucose intolerance, endothelial 

dysfunction, steatohepatitis, as well as atherosclerosis in the coronary vasculature) have 

been extensively described by several investigators [15,19,22,23].  Furthermore, the 

Ossabaw swine model of metabolic syndrome also develops mature, clinically significant 

atheroma with lipid cores, foam cells, proliferating smooth muscle cells, and small foci of 

calcification [15,24,25]. 
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Positive remodeling is the mechanism by which the lumen CSA of arteries is 

preserved despite the development of atherosclerotic disease.  The phenomenon was first 

described in human histopathologic specimens 25 years ago by Glagov and colleagues 

[2].  The investigators also reported that arterial enlargement occurred in relation to 

plaque burden (33.3%, mean) and that lumen stenosis was not present until the plaque 

occupied 40% of the lumen CSA [2].  Further accumulation of plaque resulted in 

decrease of lumen area.  Since then, several studies have demonstrated the “Glagov 

phenomenon” in coronary arteries [1,3] and peripheral arteries [8] of patients undergoing 

IVUS [1,3,8] or CCTA [6].  It has been suggested [26] that the increase in lumen CSA is 

largely compensatory; i.e., an adaptation to thickness of the intima to preserve vessel 

function. 

Arterial vessels enlarge in response to a number of factors like body weight or 

heart size [26], age [27], and blood flow [28,29].  The mechanisms by which coronary 

arteries increase their lumen size in the presence of atherosclerosis remain unclear. 

Arterial enlargement may develop as a result of intimal plaque causing involution of the 

media with outward bulging of the lesion [29].  Bond et al [30] observed substantial 

destruction of the tunica media, with dissolution of the internal elastic lamina and loss of 

smooth muscle cells.  Armstrong et al [26] noted diffuse thickening of the intima and 

focal atrophy and focal thinning of the media, albeit the total medial mass was not 

decreased.  The degradation of mural connective tissue fibers by enzymes released by 

plaque cells has also been suggested as a contributing factor [2].  de Groot and 

Veldhuizen [31] have suggested the existence of a diffuse complex of changes that start 
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with a gradual enlargement of the vessel followed by narrowing, with associated changes 

in the intima, media and adventitia. 

Wall shear stress (WSS) can be estimated by Poiseuille’s law, which states that 

shear stress is proportional to flow viscosity and inversely proportional to the third power 

of the internal radius [32].  Arterial lumen enlargement has been shown to occur in 

response to long-term increase in flow velocity and to continue until a normal level of 

WSS is restored [32,33].  The narrowing of the lumen caused by intimal hyperplasia or 

plaque deposition tends to increase flow velocity and WSS, which stimulates endothelial-

dependent arterial dilation.  Since flow did not change in our study and the lesions were 

fairly minor (<5% stenosis and normal FFR), the shear stress effect was likely not 

important in this study.   

It has also been demonstrated [34] that a decrease in blood viscosity at a constant 

flow rate leads to arterial narrowing, whereas an increase in blood viscosity causes 

arterial enlargement.  Although we did not measure blood viscosity in this study, it is 

well known that viscosity is increased in animals fed with an atherogenic diet [35] and in 

hypercholesterolemic patients [36].  The increase in blood viscosity previously reported 

varies from 0.8% to 8.2% [37-39].  In hemodynamic studies of early atherosclerotic 

changes [26], vascular resistance was found to be increased in the resting state and also 

during maximal vasodilation.  The greater viscosity of hypercholesterolemic blood may 

contribute to this finding, since lumen area is maintained or even increased.  If we 

assume a 10% increase in blood viscosity in these animals, then a 3% increase in 

diameter would be expected to maintain uniform shear stress.  Clearly, the increase in 
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lumen CSA found in this study (mean of 25%) cannot be explained by the increase in 

viscosity, and hence, WSS. 

In longitudinal animal studies, the enlargement of coronary arteries can be 

attributed to animal growth and differences in body weight.  Atherosclerotic progression 

and regression experiments [26,30], however, have demonstrated that animals fed an 

atherogenic diet had much larger coronary arteries as compared to control groups, 

suggesting that in growing animals, atherosclerosis results in increased arterial size.  The 

mean heart weights in our study were 183 g and 228 g at baseline and at 4 months, 

respectively.  Given that CSA is proportional to M
2/3

 [40], an approximately 15.7% 

increase in CSA would be expected.  Hence, the greater lumen CSA found in this study 

cannot be attributed to animal and heart growth alone.  Finally, diabetes mellitus, race, 

and sex are also minor determinants of artery size, while hypertension and cigarette 

smoking seems to have no independent influence on vessel size [29]. 

The differential degree of lumen remodeling in the three major coronary arteries 

is interesting.  The IVUS studies suggest a greater increase in lumen CSA in the order of 

RCA>LAD>LCX.  This was supported by the CT images, which suggest LAD>LCX. 

This may depend on the degree to which the vessel is supported by surrounding 

myocardium.  The RCA tends to be most superficial and transverses along the base 

without penetrating into the myocardium, unlike the LAD and LCX.   Hence, the RCA 

may be less restricted to expand radially due to the lack of myocardial restraint.  The 

effect of surrounding tissue has clearly been shown to affect remodeling of vessels during 

pressure-overload [41]. 
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Finally, positive coronary arterial remodeling has also been associated with stent 

malapposition after drug-eluting stent implantation [42].  Several studies have reported 

that positive remodeling was the main cause of late-acquired incomplete apposition, 

which was also associated with late and very late stent thrombosis [43-45]. 

In conclusion, progression of coronary artery disease is typically associated with a 

compensatory enlargement of the vessel cross-sectional area, which results in paradoxical 

lumen expansion, at the earlier stages of atherosclerosis.  The confirmation of the Glagov 

phenomenon in the Ossabaw animal model will lend to studies that may yield important 

new insights for the diagnosis, prevention and treatment of ischemic heart disease, 

especially for patients with metabolic syndrome, in whom there is a strong association 

with plaque vulnerability [46]. 

Study Limitations 

This study was designed to evaluate the remodeling process induced by the atherogenic 

diet up to 8 months.  Unfortunately, animals developed cardiac arrest during CCTA 

imaging at 8 months, precluding us from obtaining additional longitudinal data beyond 4 

months.  Ossabaw pigs on an atherogenic diet are well known to be more susceptible to 

myocardial infarction as compared to domestic pigs.  Hence, we considered a separate 

group of Ossabaw at 12 months.  Although the measurements at 12 months were made in 

a different group of animals, their weights were similar at the beginning of the study, and 

both groups were fed the same atherogenic diet.  Furthermore, two independent 

investigators analyzed the baseline and 4 months and the 12 months data, respectively. 

 Body weight-matched Yorkshire domestic pigs were used as the control group 

because Ossabaw miniature pigs do not grow or gain body weight when they are fed a 
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lean diet.  Compared with the lean domestic Yorkshire pig, the lean Ossabaw grows more 

slowly and has less muscle mass.  The Yorkshire pigs have greater cellularity and cell 

size in the skeletal muscle.  Subcutaneous fat thickness is at least twofold greater in obese 

Ossabaw pigs than in Yorkshire.  Ossabaw obese pigs are not hyperglycemic or 

hyperinsulinemic relative to the lean Yorkshire but they do have reduced glucose 

tolerance and lower plasma growth hormone [47].  Despite the use of different species in 

this study, the differences in coronary anatomy are not expected to be significant and the 

positive remodeling in the distal coronary arteries (3-4 cm distal of main branch) is 

apparent (Figure 2). 

IVUS and CCTA imaging are limited by difficulties in matching single CSA at 

different time points.  Although every effort was made to match the sites at baseline and 

at 4 months, matching may be imperfect at some points.  We used the arterial branches as 

reference points, and normalized the data according to fractional longitudinal position for 

both methods. Finally, this atherosclerosis progression study only evaluated the 

atherosclerotic changes in coronary arteries for a relatively short period of time. 

Although some studies using multislice CT angiography have failed to provide 

positive results in the primary prevention settings, new advances in imaging technology 

and computational sciences may allow the development of patient-specific models of 

coronary artery disease to accurately predict and prevent future cardiac events. 

Significance 

This is the first atherosclerosis progression study to demonstrate enlargement of the 

coronary arteries in a metabolic syndrome animal model with diffuse disease.  Positive 

remodeling may represent an early marker of disease and an indication of future adverse 
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events especially in patients with metabolic syndrome. Subjects with metabolic syndrome 

usually have multivessel involvement, more positive remodeling, and non-calcified 

plaques than those without metabolic syndrome.  Positive remodeling in the early stages 

of coronary atherosclerosis often results in plaque rupture and acute events due to the 

higher lipid content and macrophage count in these plaques [48], thus requiring an 

accurate diagnosis.  A better understanding of these findings should provide direction for 

the development of new algorithms to improve detection and management of coronary 

artery disease. 
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FIGURE LEGENDS 

Figure 1:  A) IVUS lumen CSA of LAD artery of Ossabaw pigs at baseline, 4 months 

and 12 months of atherogenic diet.  B) IVUS lumen CSA of LCX of Ossabaw pigs at 

baseline and 4 months of atherogenic diet.  C) IVUS lumen CSA of RCA of Ossabaw 

pigs at baseline and 4 months of atherogenic diet.  The data is expressed as mean±1SD. 

Figure 2:  Lumen CSA at 4 months from six Ossabaw (atherogenic diet) and five 

Yorkshire (lean diet) pigs in A) LAD and B) RCA coronary arteries.  The data is 

expressed as mean±1SD. 

Figure 3:  LAD and LCX trunks reconstruction with center lines from one representative 

Ossabaw pig from CCTA images at A) baseline and B) 4 months.  CCTA lumen CSA 

from six Ossabaw pigs (Group I) at baseline and 4 months of C) LAD artery and D) LCX 

artery.  The data is expressed as mean±1SD. 

Figure 4:  Comparison of IVUS and CCTA measurements of LAD artery CSA at A) 

baseline and B) 4 months.  Comparison of IVUS and CCTA measurements of LCX artery 

at C) baseline and D) 4 months.  The data is expressed as mean±1SD. 

Figure 5:  A) Linear regression analysis between IVUS lumen area and CCTA lumen 

area; R
2
 = 0.68.  B) Bland-Altman accuracy analysis between both imaging modalities; 

mean of difference = 0.06 mm
2
, +2SD = 2.97 mm

2
, -2SD = 2.85 mm

2
. 

Figure 6:  A) Percent stenosis of LAD, LCX and RCA at 4 months of atherogenic diet 

(Group I).  B) Percent stenosis of LAD artery at 4 (Group I) and 12 months (Group II) of 

atherogenic diet.  C) FFR at baseline and at 4 months (Group I).  The data is expressed as 

mean±1SD. 
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Figure 7:  Lumen area versus percent stenosis from seven Ossabaw pigs (Group II) after 

12 months of atherogenic diet. 
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