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Chapter 7
Vascular Geometry Reconstruction
and Grid Generation

Thomas Wischgoll, Daniel R. Einstein, Andrew P. Kuprat, Xiangmin Jiao,
and Ghassan S. Kassab

Abstract The geometry of vascular system is an important determinant of blood
flow in health and disease. There is a strong geometric component to atherosclero-
sis in coronary heart disease since lesions are preferentially located at bifurcation
points and regions of high curvature. The influence of these local structures on recir-
culation and deleterious shear stresses and their role in plaque development is widely
accepted. Over time, researchers have turned to MR, CT, or biplane images of vascu-
lar trees to faithfully capture these features in the flow simulations. Historically, this
has taken the form of labor-intensive manual reconstructions from morphometric
measurements based on the centerline, whereby small idealized subsets of vascular
trees are developed into computational grids. With improved imaging, image pro-
cessing, and geometric reconstruction algorithms, researchers have begun to develop
geometrically accurate computational models directly from the medical images.
This chapter provides an overview of contemporary methods for image process-
ing, centerline detection, boundary condition definition, and grid generation of both
clinical and research images of cardiovascular structures.

7.1 Introduction

Computational fluid dynamics (CFD) has become an increasingly important com-
ponent of integration and discovery in cardiovascular research. Although fluid and
tissue stresses are not easily measured, they can be predicted through physics-based
simulations. This is critical for cardiovascular research because vessel wall shear
stress profiles can endothelial function, thrombus formation, and rupture, as well as
the growth of aneurysms and atherosclerotic plaque. These and other cardiovascular
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issues are generally coupled multiphysics problems with a strong geometric com-
ponent. These geometries are increasingly derived from imaging modalities such as
magnetic resonance imaging (MRI) or computed tomography (CT), and are complex
and articulated across multiple scales.

Efficient visualization, analysis, and unstructured mesh generation of these mul-
tiple geometries in a way that is tuned to the physics of the problem remains
challenging. Finite computational resources dictate that computational geometry
algorithms must be efficient and that the grids must be optimally adapted to the
geometry in order to minimize both computational cost and discretization error. At
the same time, cardiovascular biophysical simulations require that the grid be orga-
nized both by scale and by intrinsic properties. The arterial wall, for example, is a
laminated tissue consisting of three separate layers, each with a separate family of
collagen and elastin fibers and smooth muscles. Thus, a grid of the vessel wall must
be similarly layered. That same layering persists at all scales of a vascular network.
These transitions of scale are mirrored in the blood. The lumen of a coronary arte-
riole, for example, may be several orders of magnitude smaller than the thickness
of a ventricle, and thus there is a need to manage error over a range of meaning-
ful scales. Although the issue of scale clearly exists in both the fluid and the solid
domains of physiological problems, an optimal discretization of the fluid and solid
will be quite different due to the very different physics that dominate each domain.
The most notable difference is that fluid problems tend to have strong gradients at
the boundary.

Here, we survey some recent developments for computational grids for vascular
CFD or fluid–solid interaction simulations. Specifically, we focus on image process-
ing, centerline detection, and grid generation. Image processing, and particularly
image segmentation, is a necessary first step for both centerline detection and grid
generation. Given a centerline, some researchers have defined idealized grids based
on subsets of arterial trees, wherein each segment of the centerline is associated with
a diameter and length, and assembled into a network of tapered tubes. Although
these types of grids have yielded valuable insights into cardiovascular flow, our
focus is to develop grids directly from the medical image. Nevertheless, the cen-
terline remains an important data structure for morphometric analysis and thus has
an important role in the determination of physiological multiscale boundary condi-
tions. Specifically, the centerlines allow for the computation of various quantitative
measurements, such as vessel length, vessel radius, and bifurcation angles.

7.2 Image Processing

In order to identify the geometry of the vasculature, typically MRI or CT is used
resulting in a volumetric image. A volumetric image consists of voxels aligned
along a regular 3-D grid. It is generally not likely that the boundary of the ves-
sels is exactly located at these voxels. A better precision can be achieved by finding
the exact location in between a set of voxels. Since an accurate representation of
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7 Vascular Geometry Reconstruction and Grid Generation 105

the object boundary is crucial to any further processing of the data, improvement
of the precision is an essential step. Different approaches are available depending
on the need of the algorithm used to further process the result. Some algorithms
for computing the centerline only require an accurate representation of individual
points. On the other hand, grid generating algorithms typically require a surface
representation of the boundary; i.e., the points need to be connected by some geo-
metric primitive. The following subsections provide examples of both types of
algorithms.

7.2.1 Segmentation of the Vessel Boundary

The method described here uses similar techniques as described by Canny’s non-
maxima suppression [1] but extended to three dimensions. First, the image gradient
is computed for every voxel. Using an experimentally determined threshold, all vox-
els with a gradient length below this threshold are neglected. The advantage of this
gradient-based thresholding is that it is less sensitive to the selected threshold com-
pared to intensity-based segmentation algorithms. This is particularly important for
smaller vessels (1 voxel in diameter or less) that can be missed due to partial volume
effects when using intensity segmentation.

In order to achieve sub-voxel precision, the gradients of the voxels exceeding
the threshold are compared to their neighbors to identify local maxima along the
gradient. In 3-D, the direct neighborhood of a single voxel generally consists of 26
voxels forming a cube that surrounds the current voxel. In order to find the local
maximum along the current gradient, the gradients of the neighboring voxels in
positive and negative directions have to be determined. When using 2-D images,
nearest-neighbor interpolation of these gradients [2] may work but yield incorrect
results in a 3-D volumetric image. Therefore, the gradients on the boundary of the
cube formed by the neighboring voxels are interpolated linearly to determine a better
approximation of the desired gradients.

Once the neighboring gradients in positive and negative direction of the cur-
rent gradient are computed, they are compared to find the local maxima. Thus, if
the length of the current gradient is larger than the length of both of its neighbors,
the local maximum can be calculated similar to the 2-D case. When interpolated
quadratically, the three gradients together form a parabolic curve along the direction
of the current gradient. In general, the current gradient is larger than the interpo-
lated neighbors since only local maxima are considered in this step. Hence, the
local maximum can be identified by determining the zero of the first derivative of
the parabolic curve. The determination of all local maxima within the volumetric
image in this fashion then results in a more accurate and smoother approximation
of the object boundary with sub-voxel precision. Once all points on the boundary
are extracted from the volumetric image using this gradient approach with sub-
voxel precision, the resulting point cloud can be further processed to identify the
centerlines.
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7.2.2 Segmentation Under Topological Control

In order to create a volume grid that is faithful to the medical image, it is necessary
to produce a triangulated isosurface from a segmentation of the data. An important
consideration is to produce such an isosurface while preserving correct vessel topol-
ogy. From a topological point of view, an arterial tree (excluding the capillary bed)
is homeomorphic with a sphere. Due to finite resolution, isosurfacing algorithms
such as Marching Cubes [3] are unable to determine whether voxels that connect
only by a corner or by an edge should truly be connected. This ambiguity can give
rise to multiple handles that corrupt segmentations. Therefore segmentations must
be performed under topological control [4].

To segment the data, a fuzzy connected-threshold algorithm is applied to the
image in order to convert the series of grayscale images into a binary volume.
Connectedness is restricted to face connectivity to prevent ambiguous repre-
sentations of the surface between vessels and background. Face connectivity is
accomplished both by restricting the region growing algorithm to faces and by a
post-segmentation connectivity check that reassigns voxels found to possess vertex
or edge connectivity.

Subsequently, loops are removed to bring the face-connected segmentation into
proper topology using an automated approach based on skeletonization, loop detec-
tion, loop cutting, and clean-up. A breadth-first search of branches in the skeleton is
applied, starting at the top of the coronary ostia. To find the optimal cutting location
within the loop, a test cut is performed separately for each skeleton voxel belonging
to the loop. Cuts are then affected at the region of minimum cross-sectional area and
maximum path length from the ostia.

To extract the isosurface from the segmented image, we apply the Marching
Tetrahedra variant of the popular Marching Cubes algorithm (Fig. 7.1). This pro-
duces a closed triangulated surface, devoid of boundary patches at the inlets and
outlets and whose surface density is a function of resolution of the underlying
data.

7.3 Centerline Detection

Numerous algorithms for extracting centerlines from volumetric data sets are avail-
able. An overview of the various techniques can be found in the paper by Cornea
et al. [5]. Some methods begin with all voxels of a volumetric image and use a
thinning technique to shrink down the object to a single line [6, 7, 8, 9, 10, 11–13,
14]. Ideally, the topology of the object should be preserved as proposed by Lobregt
et al. [15] which is the basic technique used in commercial software systems, such
as AnalyzeTM. Luboz et al. [3] used a thinning-based technique to determine vessel
radii and lengths from a CT scan. A smoothing filter was employed to eliminate
the jaggedness of the thinning process and the results were validated using a sili-
con phantom. A standard deviation of 0.4 mm between the computed and the actual
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Fig. 7.1 Maximum intensity projection of mouse coronary vasculature (a). Segmentation and
isosurface extraction (b)

measurements was reported for a scan with a resolution of 0.6 mm. The disadvan-
tage of thinning algorithms is that they can only be applied to volumetric data sets
and the centerlines are described at voxel-precision resulting in somewhat jagged
lines, which do not allow accurate measurements of branch angles.

Other approaches use the distance transform or distance field in order to obtain
centerlines. For example, fast marching methods [16, 17] can be employed to com-
pute the distance field. Voxels representing the centerlines of the object are identified
by finding ridges in the distance field. The resulting candidates must then be pruned
first. The resulting values are connected using a path connection or minimum span
tree algorithm [18, 19, 20]. The distance field can also be combined with a distance-
from-source field to compute a skeleton [21]. Similar to thinning approaches, these
methods are voxel-based and tend to generate the same jagged centerlines. This
implies that a centerline can deviate from its original location by up to half a voxel
due to the numerical representation.

A more recent method by Cornea et al. [31] computes the distance field based on
a potential similar to an electrical charge and then uses a 3-D topological analysis to
determine the centerlines. Typically, this approach is very accurate. The computa-
tions of the centerlines for a CT-scanned volumetric image of a typical size, such as
512×512×200, would take several months, however, which renders it impractical.

Techniques based on Voronoi diagrams [22, 23] define a medial axis using the
Voronoi points. Since this approach usually does not result in a single line but rather
a surface-shaped object, the points need to be clustered and connected in order to
obtain centerlines. Voronoi-based methods can be applied to volumetric images as
well as point sets. These methods usually tend to extract medial surfaces rather than
single centerlines. Hence, clustering of the resulting points is required which may
introduce numerical errors.



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

108 T. Wischgoll et al.

For extracting centerlines from volumetric images, geometry-based approaches
are preferable over voxel-based approaches. Due to the discrete nature of a voxel
of the volumetric image, the location of the centerline can have an error of half a
voxel. Geometry-based methods do not have this shortcoming. Nordsletten et al.
[24] determined normal vectors based on an iso-surface computed using the volu-
metric image. These normal vectors are projected inward. The resulting point cloud
is then collected and connected by a snake algorithm.

The method described in the following subsections follows an algorithm devel-
oped by Wischgoll et al. [20]. The major advantage of this approach lies in the
demonstrated accuracy based on actual validations between computed vessel diam-
eters and optical measurements for porcine hearts. This algorithm consists of several
steps. Since the object is given as a volumetric CT-scanned image, the object bound-
ary is extracted as previously described. A vector field is then computed that is
orthogonal to the object boundary surface. Once the vector field is computed, the
centerlines can be determined by applying a topological analysis to this vector field.
As a last step, gaps between segments of the centerlines can be closed automatically
and vessel diameters can be computed. The following subsections explain these
steps in detail.

7.3.1 Vector Field

The proposed method computes the centerlines by applying a topological analysis to
a vector field that is determined based on the geometric configuration of the object
of which the centerlines are to be determined. The vector field is computed at the
identified points on the vessel boundary in such a way that the vectors are orthogonal
to the vessel boundary surface. Based on these vectors, the vector field inside the
vessels is computed using linear interpolation.

Since the vasculature is given as a volumetric data set, the image gradients can be
used to define these vectors on the boundary surface. These image gradients are pre-
viously determined as they are needed for extracting the boundary. Since the points
are only moved along the direction of the image gradient when determining the sub-
voxel precision, this image gradient is still orthogonal to the boundary surface and
therefore represents a good approximation for the desired vector field.

7.3.2 Determination of the Centerlines

In order to determine the centerlines of the object, a tetrahedrization of all points
on the object boundary is computed first. For this, Si’s [18] fast implementation
of a Delaunay tetrahedrization algorithm is used. Tetrahedra outside of the vessels
are removed based on the gradient vectors. Note that this step also closes small
gaps that may exist since tetrahedra covering these gaps will still have vectors
attached to the vertices which point inward. Since vectors are known for each vertex
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Fig. 7.2 A bifurcation for a small vessel (3 voxels in diameter). The extracted centerline is shown
along with the respective tetrahedrization (a); Single slice through the tetrahedrization of the
phantom data set. The point on the centerline is identified in the center of the image (b)

of every tetrahedron, the complete vector field can be computed using this tetra-
hedrization by linear interpolation within each tetrahedron. This vector field is then
used to identify points of the centerlines which are then connected with each other.
Figure 7.2a shows an example of the tetrahedrization with outside tetrahedra
removed as previously described for a small vessel with a diameter of about 3 vox-
els. Based on this tetrahedrization and associated vector field, the centerlines can be
identified.

In order to perform a topological analysis on the faces of the tetrahedra, the
vector field has to be projected onto those faces first. Since tri-linear interpolation is
used within the tetrahedra, it is sufficient to project the vectors at the vertices onto
each face and then interpolate linearly within the face using these newly computed
vectors. Based on the resulting vector field, a topological analysis can be performed
on each face of every tetrahedron.

Points on the centerlines can be identified by computing the singularities within
the vector field interpolated within every face of the tetrahedrization. For example,
for a perfectly cylindrical object, the vector boundary points directly at the center
of the cylinder. When examining the resulting vector field at a cross-section of the
cylinder, a focus singularity is located at the center of the cylinder within this cross-
section. The location of this focus singularity resembles a point on the centerline of
the cylinder. Hence, a singularity of type node, focus, or spiral within a face of a
tetrahedron indicates a point of the centerline. Since not all objects are cylindrical
in shape and given the numerical errors and tolerances, points on the centerlines
can be identified from singularities that resemble focus and spiral singularities.
Figure 7.2b illustrates an example for a cylindrical object for which a cross-section
(a slice perpendicular to the object) is shown. There are two large triangles that con-
nect two opposite sides of the object. Based on these triangles, which resemble faces
of tetrahedra of the tetrahedrization, the center point (shown in red) can be identified
based on the topological analysis within these triangles.
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Obviously, only faces that are close to being a cross-section of the object
should be considered to identify points on the centerlines. To determine such cross-
sectional faces, the vectors at the vertices can be used. If the vectors at the vertices,
which are orthogonal to the object boundary, are approximately coplanar with the
face, then this face describes a cross-section of the object. As a test, the scalar prod-
uct between the normal vector of the face and the vector at all three vertices can
be used. If the result is smaller than a user-defined threshold, this face is used to
determine points on the centerlines. If we compute the singularity on one of these
faces, then we obtain a point which is part of the centerlines. Note that since linear
interpolation is used within the face, only a single singularity can be present in each
face. In case of bifurcations, there will be two neighboring tetrahedra which contain
a singularity, one for each branch. Additionally, this approach disregards boundary
points from noise voxels. In order for a set of boundary points to be considered, they
need to have gradient vectors that point towards the center from at least three dif-
ferent directions. Hence, boundary points based on noise voxels are automatically
neglected.

After computing the center points, vessel diameters are computed for each center
point and all points within the vicinity are identified. From this set of points, only
the ones that are within the slice of the vessel used to determine the center point
are selected to describe the boundary. The radius is then computed as the average of
the distances between the center points and the points on the boundary of the vessel
slice.

Once individual points of the centerlines (including the corresponding vessel
diameters) are computed by identifying the focus and spiral singularities within the
faces of the tetrahedra, this set of points must be connected in order to retrieve
all centerlines. Since the tetrahedrization describes the topology of the object, the
connectivity information of the tetrahedra can be used. Thus, identified points of
the centerlines of neighboring tetrahedra are connected with each other forming the
centerlines. In some cases, gaps will remain due to the choice of thresholds which
can be closed using the method described in the next section.

7.3.3 Geometric Reconstruction

Based on the centerlines extracted from the volumetric image, various measure-
ments can be extracted, such as vessel radius or bifurcation angles. A comparison
of the computed radii, which were measured as the distance between centerline and
vessel wall, and optical measurements of the radii for the main trunk of five porcine
hearts show an excellent accuracy with an average error of 0.7% and rms error of
1.1% of the radii. Using the centerline and radii information, conic cylinders can be
formed to represent the individual vessel segment. By representing every segment
in this way, the vascular tree can be reconstructed. Figure 7.3 shows an example of
such a geometric reconstruction of a porcine heart.
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Fig. 7.3 Geometric reconstruction of the vascular tree (left) down to the scan resolution based on
the centerline and radii information extracted from a CT-scanned porcine heart (right). (Wischgoll
et al. [20] by permission)

Fig. 7.4 Interactive visualization of vasculature based on the geometric reconstruction showing
quantitative measurements

Since the vasculature is represented as geometry, the visualization software not
only facilities the gathering of statistical information about the morphometry but it
also allows a user to perform various measurements, such as distances or bifurcation
angles. By interactively selecting individual vessel segments, for example, the ren-
dering of the geometric reconstruction is overlaid with quantitative measurements,
including segment volume and surface area as depicted in Fig. 7.4.

7.4 Grid Generation

With surfaces derived from imaging data, the organization and density of the origi-
nal surface triangles depend on the resolution of the digital data. The characteristic
dimension of the surface triangles is on the order of 1 voxel. Simply generating a
volume grid from the original surface could result in grossly under-resolving the
computed field where the surface density is close to that of the local feature size



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

112 T. Wischgoll et al.

or conversely over-resolving the computed field where the surface density is much
finer than that of the local feature size. These issues lead to a consideration of the
local feature size as an important criterion for sizing and gradation control of the
surface that is complementary to criteria that attempt to preserve surface features,
topology, and curvature. Moreover, the local feature size in vessel geometry is
related to the local diameter. Thus, a measure of the local feature size can also
provide a guide for organizing elements radially in layers. This approach has the
advantage of creating elements that are mostly parallel to the wall, which reduces
discretization error in flows that are predominately axial. At the same time, it essen-
tially decouples strategies for controlling grid density in the normal and tangential
directions. It also directly embeds a local understanding of scale into the grid, since
the local diameter is related to the local scale.

A robust and computationally efficient metric for local scale is the so-called
gradient-limited feature size (GLFS) [25]. Unlike other measures of the local feature
size, the GLFS (see Fig. 7.5) can be defined directly on a triangulated surface mesh
without a background grid and without referencing the medial axis. Thus, determi-
nation of the GLFS is not only computationally efficient, but also robust in the sense
that it is Lipchitz continuous and does not change unreasonably under perturbation
of the surface mesh. Grids that are organized according to GLFS, such that roughly
the same number of layers of elements can be found at all resolved scales, are said
to be scale-invariant. Scale-invariance is critical in grids of vascular trees because it
assures that discretization error at the smallest scale does not unduly affect solution
error at the highest scale. In other words, the discretization error is equilibrated at
all resolved scales. Combined with the GLFS, the idea of scale-invariance enables
the automatic generation of quality anisotropic unstructured grids, while keeping the
overall computational cost of the problem tractable. This approach has been adopted
in two complementary scale-invariant gridding algorithms for quality layered tetra-
hedra [25] and quality hybrid prismatic-tetrahedral grids [8]. These algorithms have
been implemented in two software frameworks, Lagrit-PNNL and MeshMagic. The
defined GLFS in these two algorithms serves three functions: (1) as a field for tan-
gential adaptation of the surface grid, (2) as a metric for creating layered tetrahedra,
and (3) as a speed function for construction of a prismatic boundary layer by appli-
cation of the Generalized Huygens’ Principle [26]. Below we define the GLFS and
outline these algorithms with examples.

7.4.1 Definition of GLFS

Let S be an oriented closed triangulated surface, which is derived from the isosurface
of imaging data by the Marching Cubes algorithm. For a vascular tree, S will consists
of a single connected component with genus 0. However, this is not an intrinsic
limitation of the approach. As illustrated in Fig. 7.6, we modify S to produce a high-
quality surface mesh S’ by performing the operations of smoothing, refinement, and
de-refinement while limiting perturbations to a small fraction of a voxel.
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Fig. 7.5 GLFS and first principal curvature (top panel) defined on a mouse coronary arterial tree
from computed tomography. Efficient computation of these sizing fields was performed in less
than 5 s for this geometry on a laptop. Based on the GLFS modulated by the curvature, the original
surface mesh from Marching Cubes is selectively refined and de-refined. The bottom panel shows
the tangential adaption of the triangulated surface mesh for ct values of 0.6 (152282 triangles) and
1.2 (129366 triangles). The curvature field for linear values of ct prevents further de-refinement
of the surface grid. For certain applications, it may make sense to convolve the GLFS with a non-
linear function that weights higher or lower scales. These operations are supported in Lagrit-PNNL
and MeshMagic

For any point x of S, we define the raw feature size or local diameter F[x] as the
length of the line segment formed by first shooting a ray from x in the direction of
n̂ [x], the inward normal at x, and then truncating the ray at its first intersection with
S; that is

F[x] ≡ min
{
λ > 0

∣∣x + λn̂[x]
∣∣ ∈ S

}
. (7.1)
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Fig. 7.6 Elaboration of closed surface mesh. Truncation produces valid triangulations and opti-
mally orthogonal planes (a). Those triangulations may then be adapted to the physics of the
problem (b) in order to produce a quality layered tetrahedral [25] grid (c)

Since S is closed, with a robust normal n̂ [1] the ray proceeding from x in the
direction n̂ will intersect S at least once, and hence F[x] is well-defined. Similarly,
we also perform an outward interrogation of the geometry to compute another raw
feature size field Fout using n̂out = −n̂in. This outwards value is finite in some
areas (e.g., at concave parts of S) and is applied only to the adaptation of sur-
face meshes, where it is necessary to respect a minimum sampling frequency for
Delaunay methods.

The raw feature size computed by ray tracing is bounded, but it is sensitive
to abrupt changes in the geometry. To address this, we first impose user-specified
lower and upper bound to the feature size, denoted by Lmin and Lmax, respectively.
Thereafter, we compute a new feature size f[x] by modifying F[x], so that the spatial
gradient is relatively insensitive to these changes in S. We accomplish this by per-
forming a gradient-limiting procedure [25]. First, we initialize f[x] to F[x]. Given a
bound G on the surface gradient of f [x], the algorithm places the directed edges that
violate the gradient limit into a max-priority queue, ranked by the key

f [x1] − (f [x2] + G |x1 − x2|) . (7.2)

which measures how much the gradient violates the gradient limit for a directed
edge x1x2 on S. Let xixj be the directed edge with the highest priority in the queue.
We relax f [xi ] to satisfy the gradient limit, recompute the gradient violation for the
edges incident on xi, and update the priority queue accordingly. The process contin-
ues until the queue is empty. For computational efficiency, ray-triangle intersections
are queried within an axis-aligned bounding box (AABB) tree [27] that contains at
its leaf nodes the bounding box for each triangle. This algorithm has a complexity
of O(N log N), where N is the number of triangles in S. Figure 7.5a shows f[x] for a
coronary arterial tree from micro-CT.

7.4.2 Layered Anisotropic Tetrahedra

Once the surface mesh has adapted to some function of the GLFS with edge lengths
on the surface equal to about ct f[x i], where ct is a user definable parameter, it is
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Fig. 7.7 Hybrid prismatic/tetrahedral grid better resolve strong gradients, shear stresses, and par-
ticle dynamics at the wall while reducing the overall element count. Panel A shows the orientation
of the cut-away plane. Panel B shows the layer of prisms at the wall. Panel C shows the tetrahedra
and prisms together

possible to construct either a layered tetrahedral volume grid (Fig. 7.6c) or a layered
hybrid prismatic/tetrahedral grid (Fig. 7.7c), depending on the solver.

To create a layered tetrahedral grid, points are cast along “seeding rays” from
each point xi on the surface S’ in the direction n̂ [xi]. If M is the target number of
layers across the cross-section of the geometry, then points xm

i , 0 ≤ m ≤ M
2 , are

distributed – equally or according to some desired ratio spacing – between x0
i ≡ xi

on the surface and xi + 1
2 f [xi]n̂ [xi]. Due to gradient-limiting, f [xi] ≤ F[xi]. In

areas where there is greater inequality, extra ‘filler’ points xM/2+1
i ,..., xmi

i are inserted
between xi + 1

2 f [xi]n̂ [xi] and xi + 1
2 F[xi]n̂ [xi] . The presence of these filler points

guarantees that points are distributed over the whole geometry [25], but with pos-
sible overlap, and possibly undesirable proximity to portions of the surface that are
nearly grazed by the seeding rays. Consequently, a filtering operation eliminates
duplicate points that lie within a fraction of Lmin of each other. Finally a Delaunay
algorithm connects these points with the restriction that the filler points are not
inserted if Delaunay point insertion would connect them to any point xi on S’.
Tetrahedra that contain no interior points (points xm

i , m ≥ 1) are removed. Finally,
the tetrahedral grid is improved with layer-aware, edge-flipping operations and a
“crushing algorithm” that inserts nodes on the opposed diagonals of slivers and then
merges them, eliminating the slivers. We note that the surface edge lengths ctf [xi]
are independent of layer thicknesses.

7.4.3 Hybrid Prismatic/Tetrahedral Grids

In the case of hybrid prismatic/tetrahedral grids, we similarly begin with an adaption
of the surface to ct f [xi]. Instead of casting and reconnecting points, however, our
method advances a surface layer by solving the Lagrangian evolution equation,

∂x

∂t
= f (x,t) n̂, (7.3)
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where t denotes time, n̂ denotes the unit surface normal, and f(x ,t) denotes the
GLFS, as defined above.

Generating a layer of prisms reduces to marching the vertices in time by dis-
cretizing Eq. (7.3). To avoid “swallowtails” [28] in strongly concave regions and in
regions with large curvatures, we apply the face offsetting method in [29], which
is based on a geometric construction called the generalized Huygens’ principle
and numerical techniques of least-squares approximation and eigenvalue analy-
sis. A comprehensive exposition of the approach is given in [8]. Here we simply
note that unlike previous approaches, which propagate vertices along some vertex
normals, this algorithm propagates faces and reconstructs the vertices. Mesh qual-
ity is achieved by applying a novel prismatic variational smoothing procedure to
improve base triangle shapes and edge orthogonality. Following face-offsetting, we
tetrahedralize the interior with a boundary constrained Delaunay method [30].

7.4.4 Element Quality

Discretization error can have two sources: (1) insufficient grid density to resolve
computed gradients, and (2) “badly” shaped elements. What exactly constitutes a
badly shaped element is somewhat application dependent. It is generally accepted
that an isotropic element, i.e. an element with nearly equal internal angles and
approximately equal edge lengths, is “good” and a highly skewed element is “bad”.
However, for certain classes of problems such as CFD, isotropic elements may be
neither necessary nor particularly appropriate. Nevertheless, the accuracy or speed
of some applications can be compromised by just a few bad elements, so it is impor-
tant to be able to judge element quality by some standard measure. In Fig. 7.8, we
present the quality statistics of the layered tetrahedral grid shown in Fig. 7.6, and
the hybrid prism/tet grid shown in Fig. 7.7. For tetrahedra, we report the aspect
ratio which is proportional to the ratio of the inscribed radius to the length of the
longest edge. For prisms, we report instead the so-called scaled aspect ratio [8],
whose definition is somewhat more involved. In effect, the scaled aspect ratio com-
bines the measures of triangle shapes and edge orthogonality. Both quality metrics
vary between 0 and 1, where 1 is optimal.

7.5 Summary

There is no doubt that patient-specific treatment requires the tools to quantify
standard patient images using conventional imaging (CT, MRI, etc.). This chap-
ter presents validated image segmentation in conjunction with mesh generation
algorithms to create mathematical models of patient vasculature. These mathemat-
ical models can then be coupled with physics-based simulations to provide the
desired diagnostic or prognostic indices. This approach will clearly impact patient
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Fig. 7.8 Element quality statistics for a layered tetrahedral grid of the mouse coronary geometry
(a), and for the hybrid prism/tetrahedral grid (b), shown in black and grey bars, respectively. Both
grids were produced with ct = 0.6. For grid (a) the number of layers M was set to 8

management medically and surgically, particularly for heart failure where interven-
tions affect the vasculature of the heart.
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